• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Explainable Time Series Forecasting using exogenous variables – How weather affects the stock market

Explainable Time Series Forecasting using exogenous variables – How weather affects the stock market

Abstract:

Climate Change is real, and this has been affecting the weather all around the world. With weather conditions changing, this thesis aims to understand how weather can be used to forecast market changes over a longer term. The aim is to understand how the ability to forecast weather can help mitigate risk during acute weather crises and disruptions, and help arbitrage the industries most affected by weather in order to stabilize the market. Modern Deep learning methods such as Temporal Fusion Transformers (TFTs) and Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) are needed to allow the inclusion of static and historical exogenous variables such as weather and location data. We therefore, use the existing state-of-the-art N-HiTS architecture, as it outperforms other models in long-horizon forecasting by incorporating hierarchical interpolation and multi-rate data sampling techniques and provides a large average accuracy improvement over the latest Transformer architectures while reducing the computation time by order of magnitude. We then modify this existing architecture by developing a novel approach that integrates weather data in the model, so that it performs better for stock data and weather covariates. We call this novel approach WiN-HiTs, Weather induced N-HiTS, and show that weather covariates can help forecast the market movements better for certain sectors like Utilities and Materials over a long forecast horizon.

This research also emphasizes on the importance of forecast decomposition in AI models, particularly in a financial and stock market context where understanding the decision-making process is crucial. The WiN-HiTS architecture allows the separation of the stack prediction components of the time series forecast, which helps us interpret how different weather factors contribute to stock price fluctuations, and how these factors are chosen. In this thesis, we use a diverse set of test data for evaluation, including historical weather and stock market data from multiple geographic locations and industries across the S&P500 stocks. Baselines for comparison include traditional models such as Auto ARIMA, as well as modern machine learning approaches like Transformer-based models (TFT) and N-HiTS itself, and results show, that WiN-HiTS performs on par for most sectors, and better than these models in certain sectors. Key Performance Indicators (KPIs) used for benchmarking include Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) to assess prediction accuracy. The evaluation of this thesis ensures the robustness and practicality of the proposed WiN-HiTS model in real-world financial forecasting scenarios.

Author:

Het Dave

Advisors:

Claudia Linnhoff-Popien, Jonas Stein, Arnold Unterauer, Nico Kraus


Student Thesis | Published September 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}