• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

A Path Towards Quantum Advantage for theUnit Commitment Problem

A Path Towards Quantum Advantage for the Unit Commitment Problem

Abstract:

This work presents a solution to the unit commitment problem (UCP) in energy grid management, an optimization problem that involves solving a system of equations to calculate costs for a given solution. We characterize the UCP as a Mixed-Integer Nonlinear Programming (MINLP) problem and solve it using a quantum simulation-based optimization (QuSO) approach, defining a class of equivalent problems solvable with the proposed algorithm. By modeling the energy grid as a specific graph, we gain valuable insights into the structure and characteristics of the susceptance matrix. We also incorporate approximate Direct Current (DC) power flow constraints into the model. The proposed quantum routine begins by inverting the reduced susceptance matrix via Quantum Singular Value Transformation (QSVT) using a specific matrix inversion polynomial. A quantum phase estimation routine, along with an additional QSVT procedure, is used to construct the cost function, which is then optimized using the Quantum Approximate Optimization Algorithm (QAOA). This hybrid quantum-classical approach leverages the computational power of quantum algorithms to enhance efficiency in solving such optimization problems. Our results evaluate the algorithm’s complexity and demonstrate its significant potential for QuSO problems. Specifically, the QSVT matrix inversion can reduce time complexity exponentially in scenarios where classical methods scale poorly with problem size. This reduction in complexity could enable real-time optimization of large-scale energy grids, thereby improving operational efficiency and reliability.

Author:

David Fischer

Advisors:

Claudia Linnhoff-Popien, Dirk André Deckert, Jonas Stein, Jago Silberbauer, Philipp Altmann


Student Thesis | Published September 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}