• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

A Reinforcement Learning Environment for directed Quantum Circuit Synthesis

A Reinforcement Learning Environment for directed Quantum Circuit Synthesis

Abstract:

Fueled by recent advances in quantum computing technologies, the design of optimized quantum circuits including reliable quantum state preparation are topics gaining more and more importance. Common approaches often require a high amount of Know-How and manual calculation hampering implementation, especially if the involved circuits increase in qubit number and gate count. Hence, addressing the rise in possible gate-to- qubit combinations by utilizing machine learning techniques represents a promising step in the development of the field. The following study aims to provide a reinforcement learning environment enabling the training of agents on the directed quantum-circuit design for the preparation of quantum states. Thus, the trained agents are enabled to create quantum circuits facilitating the preparation of desired target states, which can be handed over as inputs. In the course of this, all generated quantum-circuits are built utilizing gates from the Clifford+T gate set only. Based on the implemented environment, we conducted experiments to investigate the relation between the depth of the reconstructed quantum circuits and the involved target state parameters. The explored parameter-space included the respective qubit number and circuit-depth used for the target initialization. By providing a division of the parameter-space into several difficulty regions and a collection of well-known states, we facilitated benchmarking of different reinforcement learning algorithms on the quantum-circuit synthesis problem. Specific findings of the study include the generation of PPO-algorithm-based agents, which outperform the random-baseline. Through the application of the trained agents on the benchmarking tests we show their ability to reliably design minimal quantum-circuits for a selection of 2-qubit Bell states.

Author:

Tom Schubert

Advisors:

Claudia Linnhoff-Popien, Michael Kölle, Philipp Altmann


Student Thesis | Published November 2023 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}