• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Tobias Rohe, Maximilian Balthasar Mansky, Michael Kölle, Jonas Stein, Leo Sünkel, and Claudia Linnhoff-Popien

Abstract

Training the Variational Quantum Eigensolver (VQE) is a task that requires substantial compute. We propose the use of concepts from transfer learning to considerably reduce the training time when solving similar problem instances. We demonstrate that its utilisation leads to accelerated convergence and provides a similar quality of results compared to circuits with parameters initialised around zero. Further, transfer learning works better when the distance between the source-solution is close to that of the target-solution. Based on these findings, we present an accelerated VQE approach tested on the MaxCut problem with a problem size of 12 nodes solved with two different circuits utilised. We compare our results against a random baseline and non transfer learning trained circuits. Our experiments demonstrate that transfer learning can reduce training time by around 93\% in post-training, relative to identical circuits without the use of transfer learning. The accelerated VQE approach beats the standard approach by seven, respectively nine percentage points in terms of solution quality, if the early-stopping is considered. In settings where time-to-solution or computational costs are critical, this approach provides a significant advantage, having an improved trade-off between training effort and solution quality.

In progress


QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}