• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Approximating Quadratic Unconstrained Binary Optimization Problems using Graph Convolutional Neural Networks

Approximating Quadratic Unconstrained Binary Optimization Problems using Graph Convolutional Neural Networks

Abstract:

The quantum annealing hardware currently available has not yet reached the stage to successfully compete with ecient heuristics on classical machines, due to limitations in size and connectivity. Confronted with this challenge, the approach to approximate QUBO matrices by removing certain entries before solving them on the quantum hardware has been introduced. This is done to reduce the size and the complexity of the embedding, anticipating benefits with regard to the size of the solvable problems as well as the quality of the solutions.
We will extend this approach by using artificial neural networks to generate suitable approximations based on the structure of the matrix. The proposed model consists of two separate networks, a graph convolutional neural network to compute features for the nodes in the QUBO graph and a second fully connected network to derive a decision, whether the connection between two nodes should be removed from the matrix. A genetic algorithm was employed to train the model, using instances of seven dierent problems. Problem specific phase transitions were taken into account to confront the model with
easy and hard problem instances.
The trained models were subsequently evaluated using classical and quantum solvers, comparing the performance of the approximated matrix with the original matrix, another approximation strategy and classical approaches. The experiments provided satisfying results for certain problems, as the approximated matrices were partially able to produce even better results than the original matrices. In other respects, it became apparent, that this approach is not applicable to all problems.

Author:

Felix Ferdinand Mindt

Advisors:

Claudia Linnhoff-Popien, David Bucher, Sebastian Zielinski


Student Thesis | Published October 2023 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}