• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Paper-EN

a:3:{s:6:"locale";s:5:"en_US";s:3:"rtl";i:0;s:9:"flag_code";s:2:"us";}
Quality Diversity for Variational Quantum Circuit Optimization

Quality Diversity for Variational Quantum Circuit Optimization

Maximilian Zorn, Jonas Stein, Maximilian Balthasar Mansky, Philipp Altmann, Michael Kölle, and Claudia Linnhoff-Popien

Abstract

Optimizing the architecture of variational quantum circuits (VQCs) is crucial for advancing quantum computing (QC) towards practical applications. Current methods range from static ansatz design and evolutionary methods to machine learned VQC optimization, but are either slow, sample inefficient or require infeasible circuit depth to realize advantages. Quality diversity (QD) search methods combine diversity-driven optimization with user-specified features that offer insight into the optimization quality of circuit solution candidates. However, the choice of quality measures and the representational modeling of the circuits to allow for optimization with the current state-of-the-art QD methods like covariance matrix adaptation (CMA), is currently still an open problem. In this work we introduce a directly matrix-based circuit engineering, that can be readily optimized with QD-CMA methods and evaluate heuristic circuit quality properties like expressivity and gate-diversity as quality measures. We empirically show superior circuit optimization of our QD optimization w.r.t. speed and solution score against a set of robust benchmark algorithms from the literature on a selection of NP-hard combinatorial optimization problems.

In progress

Optimizing Sensor Redundancy in Sequential Decision-Making Problems

Optimizing Sensor Redundancy in Sequential Decision-Making Problems

Jonas Nüßlein, Maximilian Zorn, Fabian Ritz, Jonas Stein, Gerhard Stenzel, Julian Schönberger, Thomas Gabor, and Claudia Linnhoff-Popien

Abstract

Reinforcement Learning (RL) policies are designed to predict actions based on current observations to maximize cumulative future rewards. In real-world applications (i.e., non-simulated environments), sensors are essential for measuring the current state and providing the observations on which RL policies rely to make decisions. A significant challenge in deploying RL policies in real-world scenarios is handling sensor dropouts, which can result from hardware malfunctions, physical damage, or environmental factors like dust on a camera lens. A common strategy to mitigate this issue is the use of backup sensors, though this comes with added costs. This paper explores the optimization of backup sensor configurations to maximize expected returns while keeping costs below a specified threshold, C. Our approach uses a second-order approximation of expected returns and includes penalties for exceeding cost constraints. We then optimize this quadratic program using Tabu Search, a meta-heuristic algorithm. The approach is evaluated across eight OpenAI Gym environments and a custom Unity-based robotic environment (RobotArmGrasping). Empirical results demonstrate that our quadratic program effectively approximates real expected returns, facilitating the identification of optimal sensor configurations.

In progress

Investigating Parameter-Efficiency of Hybrid QuGANs Based on Geometric Properties of Generated Sea Route Graphs

Investigating Parameter-Efficiency of Hybrid QuGANs Based on Geometric Properties of Generated Sea Route Graphs

Tobias Rohe, Florian Burger, Michael Kölle, Sebastian Wölckert, Maximilian Zorn, and Claudia Linnhoff-Popien

Abstract

The demand for artificially generated data for the development, training and testing of new algorithms is omnipresent. Quantum computing (QC), does offer the hope that its inherent probabilistic functionality can be utilised in this field of generative artificial intelligence. In this study, we use quantum-classical hybrid generative adversarial networks (QuGANs) to artificially generate graphs of shipping routes. We create a training dataset based on real shipping data and investigate to what extent QuGANs are able to learn and reproduce inherent distributions and geometric features of this data. We compare hybrid QuGANs with classical Generative Adversarial Networks (GANs), with a special focus on their parameter efficiency. Our results indicate that QuGANs are indeed able to quickly learn and represent underlying geometric properties and distributions, although they seem to have difficulties in introducing variance into the sampled data. Compared to classical GANs of greater size, measured in the number of parameters used, some QuGANs show similar result quality. Our reference to concrete use cases, such as the generation of shipping data, provides an illustrative example and demonstrate the potential and diversity in which QC can be used.

In progress

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Tobias Rohe, Maximilian Balthasar Mansky, Michael Kölle, Jonas Stein, Leo Sünkel, and Claudia Linnhoff-Popien

Abstract

Training the Variational Quantum Eigensolver (VQE) is a task that requires substantial compute. We propose the use of concepts from transfer learning to considerably reduce the training time when solving similar problem instances. We demonstrate that its utilisation leads to accelerated convergence and provides a similar quality of results compared to circuits with parameters initialised around zero. Further, transfer learning works better when the distance between the source-solution is close to that of the target-solution. Based on these findings, we present an accelerated VQE approach tested on the MaxCut problem with a problem size of 12 nodes solved with two different circuits utilised. We compare our results against a random baseline and non transfer learning trained circuits. Our experiments demonstrate that transfer learning can reduce training time by around 93\% in post-training, relative to identical circuits without the use of transfer learning. The accelerated VQE approach beats the standard approach by seven, respectively nine percentage points in terms of solution quality, if the early-stopping is considered. In settings where time-to-solution or computational costs are critical, this approach provides a significant advantage, having an improved trade-off between training effort and solution quality.

In progress

From Problem to Solution: A General Pipeline to Solve Optimisation Problems on Quantum Hardware

From Problem to Solution: A General Pipeline to Solve Optimisation Problems on Quantum Hardware

Tobias Rohe, Simon Grätz, Michael Kölle, Sebastian Zielinski, Jonas Stein, and Claudia Linnhoff-Popien

Abstract

On account of the inherent complexity and novelty of quantum computing (QC), as well as the expected lack of expertise of many of the stakeholders involved in its development, QC software development projects are exposed to the risk of being conducted in a crowded and unstructured way, lacking clear guidance and understanding. This paper presents a comprehensive quantum optimisation development pipeline, novel in its depth of 22 activities across multiple stages, coupled with project management insights, uniquely targeted to the late noisy intermediate-scale quantum (NISQ) and early post-NISQ eras. We have extensively screened literature and use-cases, interviewed experts, and brought in our own expertise to develop this general quantum pipeline. The proposed solution pipeline is divided into five stages: Use-case Identification, Solution Draft, Pre-Processing, Execution and Post-Processing. Additionally, the pipeline contains two review points to address the project management view, the inherent risk of the project and the current technical maturity of QC technology. This work is intended as an orientation aid and should therefore increase the chances of success of quantum software projects.

In progress

Qandle: Accelerating State Vector Simulation Using Gate-Matrix Caching and Circuit Splitting

Qandle: Accelerating State Vector Simulation Using Gate-Matrix Caching and Circuit Splitting

Gerhard Stenzel, Sebastian Zielinski, Michael Kölle, Philipp Altmann, Jonas Nüßlein, and Thomas Gabor

Abstract

To address the computational complexity associated with state-vector simulation for quantum circuits, we propose a combination of advanced techniques to accelerate circuit execution. Quantum gate matrix caching reduces the overhead of repeated applications of the Kronecker product when applying a gate matrix to the state vector by storing decomposed partial matrices for each gate. Circuit splitting divides the circuit into sub-circuits with fewer gates by constructing a dependency graph, enabling parallel or sequential execution on disjoint subsets of the state vector. These techniques are implemented using the PyTorch machine learning framework. We demonstrate the performance of our approach by comparing it to other PyTorch-compatible quantum state-vector simulators. Our implementation, named Qandle, is designed to seamlessly integrate with existing machine learning workflows, providing a user-friendly API and compatibility with the OpenQASM format.

In progress

QMamba: Quantum Selective State Space Models for Text Generation

QMamba: Quantum Selective State Space Models for Text Generation

Gerhard Stenzel, Michael Kölle, Tobias Rohe, Maximilian Mansky, Jonas Nüßlein, and Thomas Gabor

Abstract

Quantum machine learning offers novel paradigms to address limitations in traditional natural language processing models, such as fixed context lengths and computational inefficiencies. In this work, we propose QMamba, the first quantum adaptation of the Mamba architecture, integrating selective state space models with quantum computation for efficient and scalable text generation. QMamba leverages quantum principles like superposition and entanglement to enable unbounded context sizes and reduced computational complexity. Our contributions include the development of a quantum generative model optimized for hardware constraints, advancements in encoding, embedding, and measurement techniques, and the demonstration of its performance on pattern reproduction and context-challenging tasks like ”Needle in a Haystack.” Experimental results confirm QMamba’s potential to maintain high efficiency and performance across varying sequence lengths, laying the groundwork for future explorations in quantum-enhanced natural language processing.

In progress

Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms

Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms

Leo Sünkel, Philipp Altmann, Michael Kölle, Gerhard Stenzel, Thomas Gabor, and Claudia Linnhoff-Popien

Abstract

tbc

In progress

A Constant Measurement Quantum Algorithm for Graph Connectivity

A Constant Measurement Quantum Algorithm for Graph Connectivity

Maximilian Balthasar Mansky, Chonfai Kam, and Claudia Linnhoff-Popien

Abstract

We introduce a novel quantum algorithm for determining graph connectedness using a constant number of measurements. The algorithm can be extended to find connected components with a linear number of measurements. It relies on non-unitary abelian gates taken from ZX calculus. Due to the fusion rule, the two-qubit gates correspond to a large single action on the qubits. The algorithm is general and can handle any undirected graph, including those with repeated edges and self-loops. The depth of the algorithm is variable, depending on the graph, and we derive upper and lower bounds. The algorithm exhibits a state decay that can be remedied with ancilla qubits. We provide a numerical simulation of the algorithm.

In progress

Challenges for Reinforcement Learning in Quantum Circuit Design

Challenges for Reinforcement Learning in Quantum Circuit Design

Philipp Altmann, Jonas Stein, Michael K¨olle, Adelina B¨arligea, Maximilian Zorn, Thomas
Gabor, Thomy Phan, Sebastian Feld, and Claudia Linnhoff-Popien

Abstract

Quantum computing (QC) in the current NISQ era is still limited in size and precision. Hybrid applications mitigating those shortcomings are prevalent to gain early insight and advantages. Hybrid quantum machine learning (QML) comprises both the application of QC to improve machine learning (ML) and ML to improve QC architectures. This work considers the latter, leveraging reinforcement learning (RL) to improve quantum circuit design (QCD), which we formalize by a set of generic objectives. Furthermore, we propose qcd-gym, a concrete framework formalized as a Markov decision process, to enable learning policies capable of controlling a universal set of continuously parameterized quantum gates. Finally, we provide benchmark comparisons to assess the shortcomings and strengths of current state-of-the-art RL algorithms.

In progress

1234
Page 1 of 4

QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}