• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Comparison of different hybrid quantum machine learning approaches for image classification on quantum computers

Comparison of different hybrid quantum machine learning approaches for image classification on quantum computers

Abstract:

Nowadays, Machine learning (ML) and the classification of images are becoming increasingly important. ML is used amongst others in autonomous vehicles to determine obstacles or in medicine for the automatic detection of diseases. However, the demands on neural networks used for image classification are constantly increasing as the features in the images become more and more complex. A promising solution in this area is quantum computing, or more precisely quantum machine learning (QML). Due to the advantages that qubits used in quantum computers bring with them, QML approaches could achieve significantly faster and better results than conventional ML methods. Quantum computing is currently in the so-called ’noisy intermediate-scale quantum’ (NISQ) era which means that quantum computers only have a few qubits, which are prone to errors. Accordingly, quantum machine learning cannot be easily implemented. The solution are hybrid approaches that use classical structures and combine them with quantum circuits.

This work analyzes the hybrid approaches Quanvolutional Neural Network (QCNN), Quantum Transfer Learning (QTL) and Variational Quantum Circuit (VQC). These are trained to classify the images of the MNIST data set. The training is takes place several times with different seeds in order to test the robustness of the approaches. They are then compared based on accuracy, loss and training duration. Additionally, a conventional Convolutional Neural Network (CNN) is used for comparison. Finally, the most efficient approach will be determined. The evaluation of the experiment shows that the QCNN achieves significantly better results than QTL and VQC. However, the conventional CNN performs better than the QCNN in all metrics.

Author:

Nicolas Holeczek

Advisors:

Leo Sünkel, Philipp Altmann, Claudia Linnhoff-Popien


Student Thesis | Published December 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}