• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Distributed Quantum Machine Learning -Training and Evaluating a Machine Learning Model on a Distributed Quantum Computing Simulator

Distributed Quantum Machine Learning -Training and Evaluating a Machine Learning Model on a Distributed Quantum Computing Simulator

Abstract:

The training and execution of machine learning models on quantum hardware is typically limited by the number of available qubits. A potential approach to overcoming this limitation is Distributed Quantum Machine Learning (DQML), where models are partitioned and executed across multiple quantum computers. While this increases the number of available qubits and potentially enables the training of larger models, it also introduces substantial classical and quantum communication overhead, leading to increased computational costs and extended training times. To investigate this approach and its limitations, this thesis presents a DQML model using a classical server and two quantum clients, implemented with the distributed quantum framework NetQASM. We evaluated the model on datasets with two and four features using a quantum network simulator and it achieved classification performance comparable to that of a centralized quantum baseline. To address the communication overhead, which resulted in training times of 50 to 500 minutes per epoch, optimizations in circuit design, entanglement generation, and distributed gate execution were implemented and evaluated. These adaptations led to a reduction in runtime of up to 60% while maintaining competitive classification accuracy.

Author:

Kian Izadi

Advisors:

Leo Sünkel, Michael Kölle, Thomas Gabor, Claudia Linnhoff-Popien


Student Thesis | Published March 2025 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}