• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Evaluating Parameter-Based Training Performance of Neural Networks and Variational Quantum Circuits

Evaluating Parameter-Based Training Performance of Neural Networks and Variational Quantum Circuits

Abstract:

In recent years, neural networks (NN) have played a central role in significant advancements in the field of machine learning. The increasing complexity of machine learning tasks leads to NNs with a growing number of trainable parameters, resulting in high computational and energy demands. Variational quantum circuits (VQC) are a promising alternative. They leverage quantum mechanics to model complex relationships and tend to require fewer trainable parameters compared to NNs. In this work, we evaluate and compare the training performance of NNs and VQCs on simple supervised learning and reinforcement learning tasks, considering multiple models with varying numbers of parameters. The experiments with VQCs are conducted using a simulator. To approximate how long training the VQCs would take using currently available real quantum hardware, selected parts of the training process are executed using a real quantum computer. Our results confirm that VQCs can achieve performance comparable to NNs while requiring significantly fewer parameters. Despite longer training times, our findings suggest that VQCs could be advantageous for certain machine learning tasks, particularly as quantum technology continues to rapidly advance, algorithms are optimized, and VQC architectures are improved.

Author:

Alexander Feist

Advisors:

Michael Kölle, Jonas Stein, Claudia Linnhoff-Popien


Student Thesis | Published January 2025 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}