• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Exploring Entanglement-intensity in Variational Quantum Eigensolver Algorithms for Combinatorial Optimization

Exploring Entanglement-intensity in Variational Quantum Eigensolver Algorithms for Combinatorial Optimization

Abstract:

Variational Quantum Algorithms (VQAs), including the Quantum Approximate Optimization Algorithm (QAOA), the Variational Quantum Eigensolver (VQE), and Quantum Neural Networks (QNNs), have emerged as promising approaches in the noisy intermediate-scale quantum (NISQ) era. These hybrid quantum-classical algorithms aim to solve optimization and simulation problems under the constraints of limited qubit connectivity, gate errors, and decoherence. A central feature of quantum computing, and a distinguishing factor from classical methods, is entanglement—the quantum correlation between qubits that enables certain computational advantages. While entanglement is widely considered essential for the success of VQAs, recent studies have challenged the assumption that more entanglement always improves algorithmic performance. Instead, excessive entanglement can introduce barren plateaus, increase optimization difficulty, and degrade convergence.
This work investigates the role of entanglement in the performance of the VQE, a leading algorithm for approximating ground-state energies of quantum Hamiltonians. Specifically, it explores whether limiting entanglement through structured reductions improves trainability and solution quality. To systematically analyze this relationship, two entanglement manipulation strategies are employed: (1) Dropout-based entanglement sparsification, where entangling gates are randomly removed based on a given probability, and (2) Parameterized entanglement tuning, where the strength of controlled entangling operations is constrained by a variable rotation parameter. The impact of these strategies is evaluated across three circuit ansätze by evaluating convergence behaviour as well as measuring three key-metrics: entangling capability, expressibility and approximation ratio. The results reveal that reducing entanglement via dropout improves optimization dynamics by potentially mitigating barren plateaus and increasing gradient variance, leading to faster convergence and lower final energies without compromising solution quality. However, the varying responses across different ansätze suggest that entanglement reduction should be tailored to circuit topology and problem structure rather than applied uniformly. In contrast, parameterized entanglement tuning shows a weaker influence on both trainability and final solution quality, particularly in deeper circuits where cumulative entanglement compensates for local gate-level adjustments. Notably, the study finds that convergence behavior serves as a more reliable indicator of VQE performance than expressibility or entangling capability alone, emphasizing that entanglement should be actively managed rather than maximized indiscriminately.

Autor/in:

Joel Friedrich

Betreuer:

Tobias Rohe, Philipp Altmann, Thomas Gabor, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht April 2025 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}