• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Influence of Embedding-Methods on the Generalization of Quantum Machine Learning

Influence of Embedding-Methods on the Generalization of Quantum Machine Learning

Abstract:

Quantum Machine Learning is a promising field of application for quantum computers. However, to see real advantages over classical computers, advanced quantum fundamentals are needed. One of the building blocks of quantum computers are embeddings, which convert real data into quantum data. In this work, the focus is on the influence of various embedding methods on the ”quality” of a Quantum Machine Learning model. As the focus is on these embeddings, the model and quantum circuit are kept simple. They solve a binary classification problem. Nevertheless, the interplay of certain embeddings with different circuits is also of interest and is briefly discussed in this work. Since much already exists in the literature about the embedding methods ”Angle Embedding” and ”Amplitude Embedding”, this work also focuses on other embedding methods from the literature. To determine the quality of a model, we examined its generalizability. For this, we used various metrics from classical Machine Learning. Although the question of the best embedding could not be answered, interesting insights were gained about the effects of the embeddings on different datasets.

Author:

Steffen Brandenburg

Advisors:

Einfluss von Embedding Methoden auf Generalisierbarkeit in Quantum Machine Learning

Leo Sünkel, Thomas Gabor, Claudia Linnhoff-Popien


Student Thesis | Published August 2023 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}