• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Investigating the Lottery Ticket Hypothesis for Variational Quantum Circuits

Investigating the Lottery Ticket Hypothesis for Variational Quantum Circuits

Abstract:

Quantum computing is an emerging field in computer science that has made significant progress in recent years, including in the area of machine learning. Through the principles of quantum physics, it offers the possibility of overcoming the limitations of classical algorithms. However, variational quantum circuits (VQCs), a specific type of quantum circuits utilizing varying parameters, face a significant challenge from the barren plateau phenomenon, which can hinder the optimization process in certain cases. The Lottery Ticket Hypothesis (LTH) is a recent concept in classical machine learning that has led to notable improvements in neural networks. In this thesis, we investigate whether it can be applied to VQCs. The LTH claims that within a large neural network, there exists a smaller, more efficient subnetwork (a “winning ticket”) that can achieve comparable performance. Applying this approach to VQCs could help reduce the impact of the barren plateau problem. The results of this thesis show that the weak LTH can be applied to VQCs, with winning tickets discovered that retain as little as 26.0% of the original weights. For the strong LTH, where a pruning mask is learned without any training, we found a winning ticket for a binary VQC, performing at 100% accuracy with 45% remaining weights. This shows that the strong LTH is also applicable to VQCs. These findings provide initial evidence that the LTH may be a valuable tool for improving the efficiency and performance of VQCs in quantum machine learning tasks.

Author:

Leonhard Klingert

Advisors:

Michael Kölle, Julian Schönberger, Claudia Linnhoff-Popien


Student Thesis | Published November 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}