• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Optimization of Variational Quantum Circuits for Hybrid Quantum Proximal Policy Optimization Algorithms

Optimization of Variational Quantum Circuits for Hybrid Quantum Proximal Policy Optimization Algorithms

Abstract:

Quantum computers, which are subject to current research, offer, apart from the hope for an quantum advantage, the chance of reducing the number of used trainable parameters. This is especially interesting for machine learning, since it could lead to a faster learning process and lower the use of computational resources. In the current Noisy Intermediate-Scale Quantum (NISQ) era the limited number of qubits and quantum noise make learning a difficult task. Therefore the research focuses on Variational Quantum Circuits (VQCs) which are hybrid algorithms constructed of a parameterised quantum circuit with classic optimization and only need few qubits to learn. Literature of the recent years proposes some interesting approaches to solve reinforcement learning problems using the VQC, which utilize promising strategies to increase its results that deserve closer research. In this work we will investigate data re-uploading, input and output scaling and an exponentially declining learning rate for the actor-VQC of a quantum proximal policy optimization (QPPO) algorithm, in the Frozen Lake and Cart Pole environments, on their ability to reduce the parameters of the VQC in relation to its performance. Our results show an increase of hyperparameter stability and performance for data re-uploading and our exponentially declining learning rate. While input scaling has no effect on the parameter effectiveness, output scaling can archive powerful greediness control and lead to a rise in learning speed and robustness.

Author:

Timo Witter

Advisors:

Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien


Student Thesis | Published February 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}