• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Quantum Architecture Search for Solving Quantum Machine Learning Tasks

Quantum Architecture Search for Solving Quantum Machine Learning Tasks

Abstract:

Quantum computing is a computing paradigm based on the principles of quantum mechanics. This makes it fundamentally different from classical computing. For selected problem domains, quantum computers are expected to offer a performance advantage, the so-called quantum advantage, which manifests itself in exponentially faster computation times or lower resource requirements. In the current Noisy Intermediate Scale Quantum era, quantum hardware is still limited in performance and highly error-prone. Variational Quantum Circuits represent an approach that is comparatively robust to these limitations. The performance of these quantum circuits is highly dependent on the underlying architecture of the parameterized quantum circuit. The development of powerful, hardware-compatible circuit architectures is therefore an important task, also known as Quantum Architecture Search. Developing good architectures manually is an inefficient and error-prone process. First attempts have been made to automate this process. In addition to Evolutionary Algorithms, Differentiable Architecture Search, and Monte Carlo Tree Search, Reinforcement Learning is another potentially suitable approach for finding good architectures, but it has been relatively little studied. In particular, little is known about its suitability as a search strategy for Machine Learning problems. The goal of this work is to investigate Reinforcement Learning as a suitable search strategy for quantum circuits in the context of Machine Learning problems. For this purpose, the RL-QAS framework is presented, which enables the automated search for circuit architectures using a Reinforcement Learning Agent. The RL-QAS framework is evaluated on the Iris and binary MNIST classification problems. RL-QAS enabled the discovery of architectures that achieve high test accuracy in the classification of the aforementioned datasets while exhibiting low complexity. RL-QAS demonstrated that Reinforcement Learning is indeed suitable for architecture discovery. However, in order for RL QAS to be applied to more complex problems, further development of the approach is necessary.

Author:

Simon Salfer

Advisors:

Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien


Student Thesis | Published June 2025 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}