• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Quantum Reinforcement Learning via Parameterized Quantum Walks

Quantum Reinforcement Learning via Parameterized Quantum Walks

Abstract:

Random walks find application in various domains of research such as computer science, psychology, finance or mathematics, as they are a fundamental concept in probability theory and stochastics. But conventional computers quickly reach their limits regarding computational complexity, so other ways of efficiently solving complex problems like Quantum Computing are needed. Quantum walks, the quantum equivalent of classical random walks, use quantum effects such as superposition and entanglement to be more efficient than their classical counterparts. Nevertheless, running programs on quantum devices at near-term intermediate scale quantum devices presents some challenges due to high error rates, noise, and the number of available qubits. For a large number of graph problems, Gray Code Directed Edges (GCDE) encoding counteracts these problems by reducing the required number of qubits through an efficient representation of bipartite graphs using gray code.

This work investigates random walks in grid worlds and glued trees using classical reinforcement learning strategies such as Proximal Policy Optimization or Deep Q-learning Networks. In a next step, these environments are re-built using efficient GCDE encoding. The environments are translated into parameterized quantum circuits whose parameters are optimized and learned by the walker. The contribution of this work contains the application of efficient GCDE encoding in quantum environments and a comparison between a quantum and a random walker regarding training times and target distances. Furthermore, the effects of different start positions during training and evaluation are
considered.

Author:

Sabrina Egger

Advisors:

Jonas Stein, Michael Kölle, Claudia Linnhoff-Popien


Student Thesis | Published October 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}