• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

QUBO-Generation for (MAX-)3SAT via generative AI-Methods

QUBO-Generation for (MAX-)3SAT via generative AI-Methods

Abstract:

Creating QUBOs for 3-SAT formulas using pattern QUBOs poses several challenges. Generating pattern QUBOs and building the QUBO structure itself is technically demanding due to the brute-force approach. In this study, two machine-learning approaches for QUBO generation given a 3-SAT formula are tested. Various encoding methods were explored for representing formulas and matrices. Formula encodings included vector, Word2Vec, and BERT-based methods, while latent representations were tested on QUBOs. As an initial model, a conditional autoencoder was used, with variations like dual encoders and pretrained encoders based on a RESNET18 architecture also evaluated. Accurate QUBOs could be generated for formulas with a single clause, but for formulas with up to four clauses, energy levels of solution and non-solution states overlapped. Finally, a conditional diffusion model was implemented and trained on 5 and 7 clause random formulas using vector, Word2Vec, and BERT formula embeddings. QUBOs generated with BERT formula embeddings fulfilled the highest average number of clauses per formula, though most formulas remained unsolved. Training with masked diffusion further improved performance, as QUBOs generated with masking fulfilled, on average, one additional clause. However, this approach requires a predefined mask during data generation. The sparse QUBO data structure and challenges in encoding 3-SAT formulas are likely primary factors behind these results.

Author:

Philippe Wehr

Advisors:

Sebastian Zielinski, Michael Kölle, Claudia Linnhoff-Popien


Student Thesis | Published March 2025 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}