• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Space-Efficient Quantum Optimization for the Traveling Salesman Problem via Binary Encoding of Feasible Solutions

Space-Efficient Quantum Optimization for the Traveling Salesman Problem via Binary Encoding of Feasible Solutions

Abstract:

The Traveling Salesperson Problem (TSP) is a classic combinatorial optimization problem with multiple applications in logistics, planning, and scheduling. Quantum algorithms, particularly the Quantum Approximate Optimization Algorithm (QAOA), have demonstrated potential for addressing such NP-hard problems and potentially can offer advantages over classical methods. Existing quantum approaches to the TSP typically rely on one-hot encoded states, requiring O(n^2) qubits for a TSP instance with n cities and using constraint-preserving mixers like the XY-mixer to navigate the feasible subspace. However, these methods are resource-intensive and face scalability issues due to the large number of qubits needed. This master thesis investigates a novel, space-efficient encoding scheme for solving the TSP using QAOA with a binary encoding of permutations, reducing the qubit requirement to O(n log2 n). The main challenge of binary encoding is the absence of an simple constraint-preserving mixer to maintain feasibility during optimization. To address this, an efficiently implementable unitary transformation was proposed to assign each binary-encoded tour a unique label. By adding O(log2 n!) ancillary qubits that represent each possible permutation of the TSP in factorial-base system, a canonical isomorphism between permutations and factorial-base numbers is established. The mixing operation is then performed on this ancillary space through a simpler X-mixer or a Grover mixer, automatically restricting the algorithm’s evolution to valid tours. This ensures that hard constraints remain satisfied throughout the optimization process, enabling faster convergence toward the optimal solution. Three variants of this encoding are explored in this master thesis: (1) a direct unitary transformation using a precomputed look-up table, (2) a quantum arithmetic–based method, and (3) an index-only approach that encodes both cost and mixer Hamiltonians in [log2(n!)] qubits, potentially introducing higher-order interactions. Numerical experiments with small problem instances demonstrate the feasibility of these approaches, highlighting the prospective benefits of this space-efficient encoding scheme in practical quantum optimization tasks.

Author:

Viktoria Patapovich

Advisors:

Jonas Stein, David Bucher, Claudia Linnhoff-Popien


Student Thesis | Published January 2025 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}