• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

The Trainability of Quantum FederatedLearning

The Trainability of Quantum Federated Learning

Abstract:

This thesis explores the implementation and evaluation of Quantum Federated Learning (QFL), where Variational Quantum Circuits (VQCs) are collaboratively trained across multiple quantum clients. The primary focus is on comparing the performance and trainability of QFL with traditional non-federated quantum machine learning approaches using the MNIST dataset. Experiments were conducted with 2, 3, 4, and 5 clients, each processing different subsets of data, and with varying numbers of layers (1, 2, and 4) in the quantum circuits. The trainability of the models was assessed through the evaluation of accuracy, loss, and gradient norms throughout the training process. The results demonstrate that while QFL enables collaborative learning and shows significant improvements in these metrics during training, the baseline models without federated learning generally exhibit superior performance in terms of final accuracy and loss due to the uninterrupted optimization process. Additionally, the impact of increasing the number of layers on training stability and performance was examined.

Author:

Sina Mohammad Rezaei

Advisors:

Leo Sünkel, Thomas Gabor, Tobias Rohe, Claudia Linnhoff-Popien


Student Thesis | Published November 2024 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}