Abstract:
Der Klimawandel ist real und beeinflusst das Wetter weltweit. Angesichts der sich ändernden Wetterbedingungen zielt diese Arbeit darauf ab, zu verstehen, wie Wetter genutzt werden kann, um langfristige Marktveränderungen zu modellieren. Ziel ist es, zu erfassen, wie die Fähigkeit zur Wettervorhersage dazu beitragen kann, Risiken während akuter Wetterkrisen und -störungen zu mindern und die am stärksten vom Wetter betroffenen Branchen zu arbitrage, um den Markt zu stabilisieren. Moderne Deep-Learning-Methoden wie Temporal Fusion Transformers (TFTs) und Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) sind erforderlich, um statische und historische exogene Variablen wie Wetter- und Standortdaten einzubeziehen. Daher nutzen wir die bestehende, aktuelle N-HiTS-Architektur, da sie in der Langzeitvorhersage andere Modelle übertrifft, indem sie Hierarchical Interpolation und Multi-Rate-Data Sampling integriert und eine große durchschnittliche Genauigkeitsverbesserung gegenüber den neuesten Transformer-Architekturen bietet, während die Rechenzeit um eine Größenordnung reduziert wird. Wir modifizieren dann diese bestehende Architektur, indem ich einen neuartigen Ansatz entwickle, der Wetterdaten in das Modell integriert, sodass es besser für Aktienkurse und Wetterkovariaten geeignet ist. Diesen neuartigen Ansatz nennen wir WiN-HiTs – Weather induced N-HiTS – und zeigen, dass Wetterkovariaten die Marktbewegungen in bestimmten Sektoren wie Versorgungsunternehmen und Materialien über einen langen Vorhersagehorizont besser prognostizieren können.
Diese Forschung betont auch die Bedeutung der Vorhersage-Dekomposition in KI-Modellen, insbesondere im finanziellen und Aktienmarkt-Kontext, wo das Verständnis des Entscheidungsprozesses entscheidend ist. Die WiN-HiTS-Architektur ermöglicht die Trennung der Stapelvorhersagekomponenten der Zeitreihenprognose, was uns hilft zu interpretieren, wie verschiedene Wetterfaktoren zu Aktienkursschwankungen beitragen und wie diese Faktoren ausgewählt werden. In dieser Arbeit verwenden wir einen vielfältigen Datensatz zur Bewertung, einschließlich historischer Wetter- und Aktienmarktdaten aus mehreren geografischen Regionen und Branchen der S&P500-Aktien. Vergleichsbaselines umfassen traditionelle Modelle wie Auto ARIMA sowie moderne maschinelle Lernansätze wie Transformer-basierte Modelle (TFT) und N-HiTS selbst. Die Ergebnisse zeigen, dass WiN-HiTS in den meisten Sektoren auf Augenhöhe mit diesen Modellen arbeitet und in bestimmten Sektoren besser abschneidet. Zu den Key Performance Indicators (KPIs), die zur Bewertung der Vorhersagegenauigkeit verwendet werden, gehören der mittlere absolute Fehler (MAE), der Root Mean Squared Error (MSE) und der mittlere absolute prozentuale Fehler (MAPE). Die Bewertung dieser Arbeit stellt die Robustheit und Praktikabilität des vorgeschlagenen WiN-HiTS-Modells in realen finanziellen Vorhersageszenarien sicher.
Autor/in:
Het Dave
Betreuer:
Claudia Linnhoff-Popien, Jonas Stein, Arnold Unterauer, Nico Kraus
Studentische Abschlussarbeit | Veröffentlicht September 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer