• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Anomaly Detection using Quantum Circuit Born Machines

Anomaly Detection using Quantum Circuit Born Machines

Abstract:

Die Erkennung von Anomalien ist eine wichtige Komponente in verschiedenen Bereichen, z. B. im Finanzwesen, in der medizinischen Diagnose und bei der Betrugserkennung. Da die Datensätze immer komplexer und größer werden, stoßen herkömmliche Computer an die Grenzen ihrer Verarbeitungsleistung. Im Gegensatz dazu bieten Quantencomputer dank der physikalischen Eigenschaften ihrer Qubits, wie Verschränkung und Überlagerung, vielversprechende Lösungen. Die Entwicklung des maschinellen Lernens auf der Basis von Quantencomputern, insbesondere von Quantenschaltkreisen (Quantum Circuit Born Machines, QCBMs), wird als vielversprechender Ansatz zur Bewältigung solch komplexer Probleme vorgestellt. QCBMs sind parametrisierte Quantenschaltungen, die trainiert werden können, um Stichproben aus einer Zielverteilung zu erzeugen. Ziel dieser Arbeit ist es, diese Fähigkeit zur Erkennung von Anomalien zu nutzen, deren Verteilung sich von der normaler Datenpunkte unterscheidet. Die Wirksamkeit von QCBMs für die Erkennung von Anomalien wird anhand eines Datensatzes untersucht, der mit der make_blobs-Methode aus dem Scikit-learn-Paket in Python generiert wurde und bei dem einige Ausreißer deutlich von den Clustern unterschieden werden können. Seine Leistung wird mit einem Autoencoder-Modell anhand der ROC-Kurve und des Matthews-Korrelationskoeffizienten (MCC) verglichen. Diese Metriken werden verwendet, um die Fähigkeit der Modelle zur Erkennung von Anomalien und zur Vermeidung falsch positiver Ergebnisse zu bewerten. Die Ergebnisse zeigen, dass QCBMs den Autoencoder übertreffen, wenn sie mit einem kleineren Datensatz trainiert werden, was darauf hindeutet, dass QCBMs effektiver im Umgang mit Daten sind und die zugrunde liegende Verteilung effizienter lernen können als der Autoencoder. Beide Modelle können jedoch die Verteilung lernen, wenn sie mit dem gesamten Datensatz trainiert werden.

Autor/in:

Ahmad Almohamad Alissa

Betreuer:

Jonas Stein, Danielle Schumann, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht April 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}