Abstract:
Die Erkennung von Anomalien ist eine wichtige Komponente in verschiedenen Bereichen, z. B. im Finanzwesen, in der medizinischen Diagnose und bei der Betrugserkennung. Da die Datensätze immer komplexer und größer werden, stoßen herkömmliche Computer an die Grenzen ihrer Verarbeitungsleistung. Im Gegensatz dazu bieten Quantencomputer dank der physikalischen Eigenschaften ihrer Qubits, wie Verschränkung und Überlagerung, vielversprechende Lösungen. Die Entwicklung des maschinellen Lernens auf der Basis von Quantencomputern, insbesondere von Quantenschaltkreisen (Quantum Circuit Born Machines, QCBMs), wird als vielversprechender Ansatz zur Bewältigung solch komplexer Probleme vorgestellt. QCBMs sind parametrisierte Quantenschaltungen, die trainiert werden können, um Stichproben aus einer Zielverteilung zu erzeugen. Ziel dieser Arbeit ist es, diese Fähigkeit zur Erkennung von Anomalien zu nutzen, deren Verteilung sich von der normaler Datenpunkte unterscheidet. Die Wirksamkeit von QCBMs für die Erkennung von Anomalien wird anhand eines Datensatzes untersucht, der mit der make_blobs-Methode aus dem Scikit-learn-Paket in Python generiert wurde und bei dem einige Ausreißer deutlich von den Clustern unterschieden werden können. Seine Leistung wird mit einem Autoencoder-Modell anhand der ROC-Kurve und des Matthews-Korrelationskoeffizienten (MCC) verglichen. Diese Metriken werden verwendet, um die Fähigkeit der Modelle zur Erkennung von Anomalien und zur Vermeidung falsch positiver Ergebnisse zu bewerten. Die Ergebnisse zeigen, dass QCBMs den Autoencoder übertreffen, wenn sie mit einem kleineren Datensatz trainiert werden, was darauf hindeutet, dass QCBMs effektiver im Umgang mit Daten sind und die zugrunde liegende Verteilung effizienter lernen können als der Autoencoder. Beide Modelle können jedoch die Verteilung lernen, wenn sie mit dem gesamten Datensatz trainiert werden.
Autor/in:
Ahmad Almohamad Alissa
Betreuer:
Jonas Stein, Danielle Schumann, Claudia Linnhoff-Popien
Studentische Abschlussarbeit | Veröffentlicht April 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer