• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Abstracts-QAI

a:3:{s:6:"locale";s:5:"de_DE";s:3:"rtl";i:0;s:9:"flag_code";s:2:"de";}
Vergleich verschiedener hybrider Quantum Machine Learning Ansätze zur Klassifikation von Bildern auf Quantencomputern

Vergleich verschiedener hybrider Quantum Machine Learning Ansätze zur Klassifikation von Bildern auf Quantencomputern

Abstract:

Maschinelles Lernen (ML) und die Klassifikation von Bildern werden heutzutage immer wichtiger. So findet ML beispielsweise Einsatz in autonomen Fahrzeugen, um Hindernisse zu bestimmen, oder bei der automatischen Erkennung von Krankheiten in der Medizin. Allerdings steigen die Anforderungen an neuronale Netze, welche für die Klassifikation zum Einsatz kommen, immer weiter, da die Merkmale in den Bildern immer komplexer werden. Eine vielversprechende Lösung auf diesem Gebiet ist Quantencomputing, genauer Quantum Machine Learning (QML). Durch die Vorteile, welche die in Quantencomputern verwendeten Qubits mit sich bringen, könnten QML Ansätze deutlich schnellere und bessere Ergebnisse als herkömmliche ML Methoden erzielen. Derzeit befindet sich Quantencomputing in der sogenannten ’noisy intermediate-scale quantum’ (NISQ) Ära. Das Name besagt, dass Quantencomputer nur wenige und fehleranfällige Qubits besitzen. Dementsprechend ist reines Quantum Machine Learning nicht ohne Weiteres umsetzbar. Die Lösung sind hybride Ansätze, welche auf klassische Strukturen zurückgreifen und diese mit Quantenschaltkreisen verbinden.

Diese Arbeit untersucht die hybriden Ansätze Quanvolutional Neural Network (QCNN), Quantum Transfer Learning (QTL) und Variational Quantum Circuit (VQC). Dazu werden diese trainiert die Bilder des MNIST Datensatzes zu klassifizieren. Das Training erfolgt mehrfach mit unterschiedlichen Seeds, um so die Ansätze auf ihre Robustheit zu überprüfen. Anschließend werden sie anhand von Genauigkeit, Verlust und Trainingsdauer miteinander verglichen. Zusätzlich wird ein herkömmliches Convolutional Neural Network (CNN) zum Vergleich herangezogen. Am Schluss kann so die Bestimmung des effizientesten Ansatzes erfolgen. Die Auswertung des Experiments zeigt, dass das QCNN deutlich bessere Ergebnisse als QTL und VQC erzielt. Allerdings schneidet das herkömmliche CNN bei allen Metriken besser ab als das QCNN.

Autor/in:

Nicolas Holeczek

Betreuer:

Leo Sünkel, Philipp Altmann, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Dezember 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Architektonische Einflüsse auf variationelle Quantenschaltkreise im Multi-Agenten Reinforcement Learning: Evolutionäre Optimierungsstrategien

Architektonische Einflüsse auf variationelle Quantenschaltkreise im Multi-Agenten Reinforcement Learning: Evolutionäre Optimierungsstrategien

Abstract:

Das Forschungsgebiet des Multi-Agenten Reinforcement Learning (MARL) gewinnt zunehmend an Bedeutung, insbesondere in Anwendungsbereichen wie autonomem Fahren und Robotik, in denen mehrere Akteure interagieren. Eine zentrale Herausforderung des MARL ist das exponentielle Wachstum der Dimensionen in den Zustands- und Aktionsräumen. Die Nutzung quantenmechanischer Eigenschaften bietet vielversprechende Lösungen, da sie eine kompakte Verarbeitung hochdimensionaler Daten ermöglicht und die Anzahl der zu optimierenden Parameter reduziert. Ein Nachteil gradientenbasierter Optimierungs-Methoden im Quanten MARL ist das Auftreten von Barren Plateaus, welche die Konvergenz durch ineffektive Parameter-Updates behindern. Evolutionäre Algorithmen umgehen dieses Problem, indem sie ohne Gradienten arbeiten. Aufbauend auf Forschungsergebnissen, die das Potenzial Evolutionärer Algorithmen zur Optimierung Variationaler Quantenschaltkreise für MARL aufzeigen, untersuchen wir, welchen Einfluss die Einführung von Modifikationen der Architektur im Evolutionsprozess auf die Optimierung hat. Drei Architekturkonzepte für Variationale Quantenschaltkreise — Ebenen-Basiert, Gatter-Basiert und Prototyp-Basiert — wurden mithilfe zweier evolutionärer Strategien untersucht: einer Kombination aus Rekombination und Mutation (ReMu) sowie einer nur auf Mutation basierenden Strategie (Mu). Die Effizienz der Ansätze wurde anhand des Coin Games evaluiert, wobei eine Version ohne Anpassungen der Architektur als Vergleichsgrundlage diente. Die Mu-Strategie in Kombination mit dem Gatter-Basierten Ansatz erzielte die besten Ergebnisse, einschließlich der höchsten Punktzahlen, der meisten gesammelten Münzen und der höchsten Eigenmünzenquote, und benötigte dabei die geringste Anzahl an Parametern. Darüber hinaus benötigte eine Variante des Gate-Basierten Ansatzes, welche vergleichbare Ergebnisse wie die der Vergleichsgrundlage erzielte, deutlich weniger Gatter, was zu einer Beschleunigung der Laufzeit um 90,1% führte.

Autor/in:

Karola Schneider

Betreuer:

Michael Kölle, Leo Sünkel, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht November 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Trainierbarkeit des Quantum Federated Lernens

Trainierbarkeit des Quantum Federated Lernens

Abstract:

Diese Arbeit untersucht die Implementierung und Evaluierung von Quantum Federated Learning (QFL), bei dem Variational Quantum Circuits (VQCs) kollaborativ über mehrere mehreren Quanten-Clients trainiert werden. Der Hauptfokus liegt auf dem Vergleich der Leistung und der Trainierbarkeit von QFL mit traditionellen, nicht föderierten Ansätzen des maschinellen Quantenlernens unter dem MNIST-Datensatz. Die Experimente wurden mit 2, 3, 4 und 5 Clients durchgeführt, die jeweils und mit einer unterschiedlichen Anzahl von Schichten (1, 2 und 4) in den Quantenschaltungen durchgeführt. Quantenschaltungen. Die Trainierbarkeit der Modelle wurde durch die Auswertung von Genauigkeit, Verlust und Gradientennormen während des gesamten Trainingsprozesses bewertet. Die Ergebnisse zeigen, dass QFL zwar kollaboratives Lernen ermöglicht und deutliche Verbesserungen während des Trainings signifikante Verbesserungen in diesen Metriken zeigt, die Basismodelle ohne föderiertes Lernen aufgrund des ununterbrochenen Optimierungsprozesses eine bessere Leistung in Bezug auf
Optimierungsprozess. Zusätzlich wurde die Auswirkung der Erhöhung der Anzahl der Schichten auf die Trainingsstabilität und -leistung untersucht.

Autor/in:

Sina Mohammad Rezaei

Betreuer:

Leo Suenkel, Thomas Gabor, Tobias Rohe, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht November 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Untersuchen der Lottery Ticket Hypothese für variationelle Quantenschaltkreise

Untersuchen der Lottery Ticket Hypothese für variationelle Quantenschaltkreise

Abstract:

Quantencomputing ist ein aufstrebendes Feld in der Informatik, welches in den letzten Jahren große Fortschritte erzielt hat, unteranderem im Bereich des maschinellen Lernens. Durch die Prinzipien der Quantenphysik bietet es die Möglichkeit, die Grenzen von klassischen Algorithmen zu überwinden. Variational Quantum Circuits (VQC), eine spezielle Form von Quantum Circuits, welche variierende Parameter haben, stehen jedoch durch das Barren Plateau-Phänomen vor einer erheblichen Herausforderung, das den Optimierungsprozess in bestimmten Fällen behindern kann. Die Lottery Ticket Hypothesis (LTH) ist ein aktuelles Konzept im klassischen maschinellen Lernen, das zu bemerkenswerten Verbesserungen in neuronalen Netzwerken führen kann. Diese Arbeit untersucht, ob de LTH auf VQCs angewendet werden kann. Die LTH besagt, dass es innerhalb eines großen neuronalen Netzwerks ein kleineres, effizienteres Subnetzwerk, auch Winning Ticket genannt, gibt, das eine vergleichbare Leistung wie das ursprüngliche, vollvernetzte Netzwerk erzielen kann. Die Anwendung dieses Ansatzes auf VQCs könnte helfen, die Auswirkungen des Barren Plateau-Problems zu verringern. Die Ergebnisse dieser Arbeit zeigen, dass die Weak LTH auf VQCs anwendbar ist, wobei Winning Tickets gefunden wurden, die lediglich 26,0% der ursprünglichen Gewichte haben. Für die Strong LTH, bei der das Pruning ohne vorheriges Training durchgeführt wird, wurde ein Winning Ticket für einen Binary VQC gefunden, welcher 100% Accuracy mit 45% der ursprünglichen Gewichte erreicht. Das zeigt, dass die Strong LTH auf VQCs anwendbar ist. Diese Ergebnisse liefern erste Hinweise darauf, dass die LTH ein Ansatz zur Verbesserung der Effizienz und Leistung von VQCs in Quantum Machine Learning
Aufgaben sein könnte.

Autor/in:

Leonhard Klingert

Betreuer:

Michael Kölle, Julian Schönberger, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht November 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Quantum Reinforcement Learning via parametrisierten Quantum Walks

Quantum Reinforcement Learning via parametrisierten Quantum Walks

Abstract:

Random Walks finden in verschiedenen Forschungsbereichen wie der Informatik, der Psychologie, dem Finanzwesen oder der Mathematik Anwendung, da sie ein grundlegendes Konzept der Wahrscheinlichkeitstheorie und Stochastik darstellen. Herkömmliche Computer stoßen jedoch schnell an ihre Grenzen hinsichtlich der Rechenkomplexität, so dass andere Wege zur effizienten Lösung komplexer Probleme wie das Quantencomputing erforderlich sind. Quantum Walks, das Quantenäquivalent zum klassischen Random Walk, nutzen Quanteneffekte wie Überlagerung und Verschränkung, um effizienter zu sein als ihre klassischen Gegenstücke. Dennoch stellt die Ausführung von Programmen auf Quantenrechnern in der nahen Zukunft aufgrund der hohen Fehlerraten, des Rauschens und der Anzahl der verfügbaren Qubits eine gewisse Herausforderung dar. Für eine große Anzahl von Graphproblemen wirkt die Kodierung mit Gray Code Directed Edges (GCDE) diesen Problemen entgegen, indem sie die erforderliche Anzahl von Qubits durch eine effiziente Darstellung von bipartiten Graphen unter Verwendung von Gray Code reduziert.

Diese Arbeit untersucht Random Walks in Grid Worlds und Glued Trees unter Verwendung klassischer Reinforcement Learning Strategien wie Proximal Policy Optimization oder Deep Q-learning Networks. In einem weiteren Schritt werden die Umgebungen mit effizienter GCDE-Kodierung neu aufgebaut. Die Umgebungen werden in parametrisierte Quantenschaltkreise übersetzt, deren Parameter durch den Agenten optimiert und gelernt werden. Der Beitrag dieser Arbeit beinhaltet die Anwendung der effizienten GCDE-Kodierung in Quantenumgebungen und einen Vergleich zwischen einem Quanten- und einem Random-Walker hinsichtlich Trainingszeiten und Zieldistanzen. Außerdem werden die Auswirkungen unterschiedlicher Startpositionen beim Training und bei der Auswertung berücksichtigt.

Autor/in:

Sabrina Egger

Betreuer:

Jonas Stein, Michael Kölle, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Oktober 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Optimierung von Variational Quantum Circuits für Hybride Quantum Proximal Policy Optimization Algorithmen

Optimierung von Variational Quantum Circuits für Hybride Quantum Proximal Policy Optimization Algorithmen

Abstract:

Quantencomputer, welche sich aktuell in der Entwicklung befinden, bieten in der Theorie neben der Hoffnung auf einen Quantenvorteil auch die Möglichkeit der Parameterreduktion. Diese ist insbesondere für das Machine Learning interessant, da sie einen schnelleren Lernvorgang und geringeren Arbeitsspeicherverbrauch für die rechenintensiven Prozesse erlauben würde. Im aktuellen Noisy Intermediate-Scale Quantum (NISQ) Zeitalter ist die Anzahl der Quantenbits jedoch noch beschränkt und Quantenrauschen erschwert das Training, daher konzentriert sich die Forschung auf Variational Quantum Circuits (VQCs). Diese hybriden Algorithmen aus einem parametrisierten Quantenschaltkreis mit klassischer Optimierung benötigen nur wenige Qubits, wodurch sie bereits jetzt die Möglichkeit bieten relevante Erfolge zu erzielen. In der der Literatur wurden in den letzten Jahren einige interessante Versionen vorgestellt, welche diese einsetzen, um Reinforcement Learning Probleme zu lösen und dabei vielversprechende Ansätze zur Verbesserung der Performance verwenden, welche es verdienen genauer betrachtet zu werden. In dieser Arbeit wird die Effektivität von Data Re-uploading, Input und Output Scaling und einer exponentiell abfallenden Lernrate für den Actor VQC eines Quantum Proximal Policy Optimization (QPPO) Algorithmus in den Frozen Lake und Cart Pole Umgebungen auf ihre Fähigkeit die Leistung des Schaltkreises im Verhältnis zur verwendeten Parameterzahl zu erhöhen evaluiert. Die Ergebnisse zeigen, dass die exponentiell abfallenden Lernrate und Data Re-uploading ohne das Hinzufügen weiterer trainierbarer Parameter die Leistung des VQC und dessen Hyperparameterstabilität deutlich erhöhen. Während Input Scaling keinen Einfluss auf die Parametereffizienz zu haben scheint, konnte Output Scaling eine wirksame Greediness-Kontrolle und so eine deutliche Steigerung der Performance und Robustheit ermöglichen.

Autor/in:

Timo Witter

Betreuer:

Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Februar 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Wegzusammenhang des Topologischen Randes zwischen Features, die von einem Einschichtigen Perzeptron, das zwischen Zwei Kategorien Differenziert, Unterschiedlich Kategorisiert Werden

Wegzusammenhang des Topologischen Randes zwischen Features, die von einem Einschichtigen Perzeptron, das zwischen Zwei Kategorien Differenziert, Unterschiedlich Kategorisiert Werden

Abstract:

Dank der bemerkenswerten Fortschritte im High-Performance-Computing können Maschinen immer größere Datenmengen verarbeiten, um zahlreiche Parameter eines Machine-Learning-Modells (ML-Modell) anzulernen. Auf diese Weise erkennt und lernt eine Maschine Muster und kann durchaus zu guten und schnellen Entscheidungen kommen. Der Erfolg eines ML-Modells hängt jedoch nicht nur von der Leistungsfähigkeit des Systems ab, auf dem es läuft, welches dadurch große oder weniger große Datenmengen verarbeiten kann. Zahlreiche und vielfältige Daten sind meist hilfreich, aber nicht der alleinige Schlüssel zu einem zuverlässigen Modell. Auch Modelle mit nur wenigen trainierbaren Parametern, bei denen kleinere Datensätze für das Training ausreichen, können erstaunliche Ergebnisse liefern, wenn das Basismodell sinnvoll gewählt ist und zu den Daten und der Aufgabe passt.

Abstrakt betrachtet sind ML-Modelle parametrisierte Funktionen, bei denen die Parameter während des Lernprozesses optimiert werden. Um zu prüfen, ob ein bestimmtes ML-Modell qualitativ passt, können wir auf mathematische Weise Anforderungen an das Modell aufstellen. Hier erwägen wir solche Vorgaben, die keine konkrete Belegung der Parameter voraussetzen, sondern die ein bestimmtes Verhalten der dem Modell entsprechenden Funktion für beliebige Parameter erwarten. Anschließend können wir beweisen, dass ein bestimmtes Modell die Anforderungen erfüllt oder ein spezifischeres Gegenbeispiel konstruieren, aus dem hervorgeht, dass eine bestimmte mathematische Eigenschaft für das betrachtete Modell nicht im Allgemeinen gilt.

In dieser Bachelorarbeit betrachten wir Single Layer Perceptrons (SLPs), die Features zwischen zwei verschiedenen Labels kategorisieren. SLPs kann man als Ursprung der heutigen Deep Neural Networks bezeichnen. Wir zeigen, dass unter bestimmten Vorbedingungen der Rand zwischen den beiden Kategorien innerhalb des Feature Space wegzusammenhängend ist. Dies spricht dafür, dass ein SLP eine vernünftige Wahl ist, wenn wir bestimmtes Vorwissen über die Features haben: Falls wir wissen, dass die Grenze zwischen den beiden Kategorien in der Realität wegzusammenhängend ist, können wir Modelle ausschließen, die einen Rand mit Unterbrechungen (nicht wegzusammenhängend) erzeugen.

Autor/in:

Max Mustermann

Betreuer:

Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Dezember 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Die Nutzung von Quantum Machine Learning zum Vorhersagen von Asset Preisen in finanziellen Märkten

Die Nutzung von Quantum Machine Learning zum Vorhersagen von Asset Preisen in finanziellen Märkten

Abstract:

Im Finanzwesen wird viel Aufwand betrieben, um zukünftige Vermögenspreise vorherzusagen. Schon eine kleine Steigerung der Prognosefähigkeit kann enorme Gewinne generieren. Einige statistische Modelle identifizieren Muster, Trends und Korrelationen in vergangenen Preisen und wenden diese an, um zukünftige Vermögenspreise vorherzusagen. Ein neuartiger Ansatz ist die Verwendung künstlicher Intelligenz, um die zugrunde liegenden Trends in den Daten zu erlernen und zukünftige Vermögenspreise vorherzusagen. Mit der rasanten Weiterentwicklung von Quantencomputern werden auch diese Anwendungsbereiche, insbesondere im Hinblick auf maschinelles Lernen, immer interessanter. Diese Arbeit implementiert mehrere Modelle dieser verschiedenen Gruppen: ARIMA, RBM, LSTM und QDBM (Quantum Deep Boltzmann Machine). Diese Modelle werden mithilfe historischer Vermögenspreise trainiert und zur Vorhersage zukünftiger Vermögenspreise verwendet. Die Vorhersagen der Modelle dienen außerdem als Eingabe für einen simulierten Handelsalgorithmus, der die Effektivität dieser Vorhersagen beim aktiven Handel von Vermögenswerten untersucht. Die Vorhersagen werden für zehn verschiedene Vermögenswerte durchgeführt, die an der NYSE, NASDAQ und XETRA notiert sind. Der betrachtete Zeitraum erstreckt sich über fünf Jahre, von 2018 bis 2022. Die ausgewählten Vermögenswerte stammen aus verschiedenen Industriesektoren und weisen unterschiedliche Preisverläufe auf. Der Handel, basierend auf den Modellvorhersagen, konnte die klassische Buy-and-Hold-Strategie in neun der zehn getesteten Vermögenswerte entweder erreichen oder übertreffen.

Autor/in:

Maximilian Adler

Betreuer:

Claudia Linnhoff-Popien, Jonas Stein, Jonas Nüßlein, Nico Kraus (Aqarios GmbH)


Studentische Abschlussarbeit | Veröffentlicht November 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Quanten Diffusions Modelle

Quanten Diffusions Modelle

Abstract:

Machine Learning Modelle zur Erzeugung von Bildern haben im letzten Jahr stark an Bekanntheit gewonnen. DALL-E, Craiyon und Stable Diffusion können hochauflösende Bilder erzeugen, indem die Nutzer nur eine kurze Beschreibung (Prompt) des gewünschten Bildes eingeben. Ein weiteres wachsendes Feld ist die Quanteninformatik, besonders das Quantum-enhanced Machine Learning. Quantencomputer lösen Probleme mit Hilfe ihrer einzigartigen quantummechanischen Eigenschaften. In dieser Arbeit wird untersucht, wie die Verwendung von Quantum-enhanced Machine Learning und Variational Quantum Circuits die Bildgenerierung durch Diffusion-basierte Modelle verbessern kann.
Dabei wird auf die beiden größten Schwächen von klassischen Diffusionsmodellen eingegangen, die niedrige Geschwindigkeit beim Sampling und die hohe Anzahl an benötigten Parametern. Es werden Implementierungen eines Quantum-enhanced Denoising Diffusion Models präsentiert und ihre Leistung mit der von klassischen Modellen verglichen, indem die Modelle auf bekannten Datensätzen (MNIST digits und fashion, CIFAR10) trainiert werden. Wir zeigen, dass unsere Modelle eine bessere Leistung (gemessen in FID, SSIM und PSNR) liefern als die klassischen Modelle mit vergleichbarer Anzahl an
Parametern.

Autor/in:

Gerhard Stenzel

Betreuer:

Claudia Linnhoff-Popien, Michael Kölle, Jonas Stein, Andreas Sedlmeier


Studentische Abschlussarbeit | Veröffentlicht Oktober 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Dimensionalitätsreduktion mit Autoencodern für effiziente Klassifizierung mit Variationellen Quantenschaltkreisen

Dimensionalitätsreduktion mit Autoencodern für effiziente Klassifizierung mit Variationellen Quantenschaltkreisen

Abstract:

Quantencomputing verspricht insbesondere bei datenintensiven und komplexen Berechnungen Leistungsvorteile. Allerdings befinden wir uns derzeit in der Noisy-Intermediate-Scale-Quantum Ära mit einer begrenzten Anzahl von Qubits, was es erschwert diese potentiellen Quantum-Advantages bei maschinellem Lernen zu realisieren. Mehrere Lösungen wurden vorgeschlagen, wie beispielsweise das hybride Transfer-Learning, bei dem ein vortrainiertes klassisches neuronales Netz als Feature-Extractor und ein Variational Quantum Circuit als Classifier fungiert. Während diese Ansätze oft gute Ergebnisse
liefern, ist es nicht möglich, den Beitrag des klassischen und des Quantenanteils zu der Gesamtperformance eindeutig zu bestimmen. Ziel dieser Arbeit ist es daher, ein hybrides Modell einzuführen, das die genannten Einschränkungen behandelt und eine klare Unterscheidung zwischen den Komponenten in Bezug auf die Gesamtleistung vornimmt. Zur Reduktion der Input-Dimension wird ein Autoencoder verwendet. In diesem Zusammenhang wollen wir auch die Leistung von Transfer-Learning-Modellen (Dressed Quantum Circuit und SEQUENT) und einem Variational Quantum Circuit mit Amplitude Embedding mit unserem Modell vergleichen. Zusätzlich wird die Leistung eines rein klassischen neuronalen Netzes und eines Autoencoders in Kombination mit ebendiesem untersucht.
Wir vergleichen die Test-Accuracies der Modelle über die Datensätze Banknote Authentication, Breast Cancer Wisconsin, MNIST und AudioMNIST. Die Ergebnisse zeigen, dass das klassische neuronale Netz und die hybriden Transfer-Learning-Ansätze eine bessere Performance liefern als unser Modell. Das entspricht unseren Erwartungen und deutet darauf hin, dass der klassische Teil des Transfer-Learnings in der Tat den Großteil an der Gesamtperformance leistet. Im Vergleich zu einem Variational Quantum Circuit mit Amplitude Embedding ist kein signifikanter Unterschied zu beobachten, sodass unser Modell
eine valide Alternative zu diesem darstellt.

Autor/in:

Jonas Maurer

Betreuer:

Claudia Linnhoff-Popien, Michael Kölle, Philipp Altmann, Leo Sünkel


Studentische Abschlussarbeit | Veröffentlicht Oktober 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


123
Page 2 of 3

QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}