• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Paper

a:3:{s:6:"locale";s:5:"de_DE";s:3:"rtl";i:0;s:9:"flag_code";s:2:"de";}
Approximate Approximation on a Quantum Annealer

Approximate Approximation on a Quantum Annealer

Irmengard Sax, Sebastian Feld, Sebastian Zielinski, Thomas Gabor, Claudia Linnhoff-Popien, Wolfgang Mauerer

Abstract

Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems’ approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the realworld power and limitations of current-state and future quantum computing.

Published in ,. ACM, New York, NY, USA, 9 pages

PDF Download

Optimizing Geometry Compression using Quantum Annealing

Optimizing Geometry Compression using Quantum Annealing

S. Feld, M. Friedrich, and C. Linnhoff-Popien

Abstract

The compression of geometry data is an important aspect of bandwidth-efficient data transfer for distributed 3d computer vision applications. We propose a quantum-enabled lossy 3d point cloud compression pipeline based on the constructive solid geometry (CSG) model representation. Key parts of the pipeline are mapped to NP-complete problems for which an efficient Ising formulation suitable for the execution on a Quantum Annealer exists. We describe existing Ising formulations for the maximum clique search problem and the smallest exact cover problem, both of which are important building blocks of the proposed compression pipeline. Additionally, we discuss the properties of the overall pipeline regarding result optimality and described Ising formulations.

IEEE Workshop on Quantum Communications and Information Technology 2018 (IEEE QCIT 2018), 2018, pp. 1-6

PDF Download

Torwards understanding Approximation Complexity on a Quantum Annealer (Extended Abstract)

Torwards understanding Approximation Complexity on a Quantum Annealer (Extended Abstract)

I. Sax, S. Feld, S. Zielinski, T. Gabor, C. Linnhoff-Popien, and W. Mauerer

Extended Abstract

Many industrially relevant problems can be deterministically solved by computers in principle, but are intractable in practice, as the seminal P/NP dichotomy of complexity theory and Cobham’s thesis testify. For the many NP-complete problems, industry needs to resort to using heuristics or approximation algorithms. For approximation algorithms, there is a more refined classification in complexity classes that goes beyond the simple P/NP dichotomy. As it is well known, approximation classes form a hierarchy, that is, FPTAS \subseteq  PTAS \subseteq  APX \subseteq  NPO. This classification gives a more realistic notion of complexity but—unless unexpected breakthroughs happen for fundamental problems like P = NP or related questions— there is no known efficient algorithm that can solve such problems exactly on a realistic computer. Therefore, new ways of computations are sought. Recently, considerable hope was placed on the possible computational powers of quantum computers and quantum annealing (QA) in particular. However, the precise benefits of such a drastic shift in hardware are still unchartered territory to a good extent. Firstly, the exact relations between classical and quantum complexity classes pose many open questions, and secondly, technical details of formulating and implementing quantum algorithms play a crucial role in real-world applications. Guided by the hierarchy of classical optimisation complexity classes, we discuss how to map problems of each class to a quantum annealer. Those problems are the Minimum Multiprocessor Scheduling (MMS) problem, the Minimum Vertex Cover (MVC) problem and the Maximum Independent Set (MIS) problem. We experimentally investigate if and how the degree of approximability influences implementation and run-time performance. Our experiments indicate a discrepancy between classical approximation complexity and QA behaviour: Problems MIS and MVC, members of APX respectively PTAS, exhibit better solution quality on a QA than MMS, which is in FPTAS, even despite the use of preprocessing the for latter. This leads to the hypothesis that traditional classifications do not immediately extend to the quantum annealing domain, at least when the properties of real-world devices are taken into account. A structural reason, why FPTAS problems do not show good solution quality, might be the use of an inequlity in the problem description of the FPTAS problems. Formulating those inequalities on a quantum hardware (mostly done by formulating a Quadratic Unconstrained Binary optimisation (QUBO) problem in form of a matrix) requires a lot of hardware space which makes finding an optimal solution more difficult. Reducing the density of a QUBO is possible by appropriately pruning QUBO matrices. For the problems considered in our evaluation, we find that the achievable solution quality on a real-world machine is unexpectedly robust against pruning, often up to ratios as high as 50% or more. Since quantum annealers are probabilistic machines by design, the loss in solution quality is only of subordinate relevance, especially considering that the pruning of QUBO matrices allows for solving larger problem instances on hardware of a given capacity. We quantitatively discuss the interplay between these factors.

1st International Symposium on Applied Artificial Intelligence (ISAAI’19)

PDF Download

Integration and Evaluation of Quantum Accelerators for Data-Driven User Functions

Integration and Evaluation of Quantum Accelerators for Data-Driven User Functions

Thomas Hubregtsen, Christoph Segler, Josef Pichlmeier, Aritra Sarkar, Thomas Gabor, Koen Bertels
Abstract

Quantum computers hold great promise for accelerating computationally challenging algorithms on noisy intermediate-scale quantum (NISQ) devices in the upcoming years. Much attention of the current research is directed to algorithmic research on artificial data that is disconnected from live systems, such as optimization of systems or training of learning algorithms. In this paper we investigate the integration of quantum systems into industry-grade system architectures. In this work we propose a system architecture for the integration of quantum accelerators. In order to evaluate our proposed system architecture we implemented various algorithms including a classical system, a gate-based quantum accelerator and a quantum annealer. This algorithm automates user habits using data-driven functions trained on real-world data. This also includes an evaluation of the quantum enhanced kernel, that previously was only evaluated on artificial data. In our evaluation, we showed that the quantum-enhanced kernel performs at least equally well to a classical state-of-the-art kernel. We also showed a low reduction in accuracy and latency numbers within acceptable bounds when running on the gate-based IBM quantum accelerator. We, therefore, conclude it is feasible to integrate NISQ-era devices in industry-grade system architecture in preparation for future hardware improvements.

21st International Symposium on Quality Electronic Design (ISQED), pages 329-334

PDF Download

Cross Entropy Hyperparameter Optimization for Constrained Problem Hamiltonians Applied to QAOA

Cross Entropy Hyperparameter Optimization for Constrained Problem Hamiltonians Applied to QAOA

Christoph Roch, Alexander Impertro, Thomy Phan, Thomas Gabor, Sebastian Feld, Claudia Linnhoff-Popien
Abstract

Hybrid quantum-classical algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications. Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem. The solution quality of QAOA depends to a high degree on the parameters chosen by the classical optimizer at each iteration. However, the solution landscape of those parameters is highly multi-dimensional and contains many low-quality local optima. In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical optimizer to find better parameter more easily and hence results in an improved performance. We empirically demonstrate that this approach can reach a significant better solution quality for the Knapsack Problem.

Accepted for publication, arXiv preprint arXiv:2003.05292 (2020)

PDF Download

A Hybrid Solution Method for the Capacitated Vehicle Routing Problem Using a Quantum Annealer

A Hybrid Solution Method for the Capacitated Vehicle Routing Problem Using a Quantum Annealer

S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien

Abstract

The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that has been of great interest for decades for both, science and industry. The CVRP is a variant of the vehicle routing problem characterized by capacity constrained vehicles. The aim is to plan tours for vehicles to supply a given number of customers as efficiently as possible. The problem is the combinatorial explosion of possible solutions, which increases superexponentially with the number of customers. Classical solutions provide good approximations to the globally optimal solution. D-Wave’s quantum annealer is a machine designed to solve optimization problems. This machine uses quantum effects to speed up computation time compared to classic computers. The problem on solving the CVRP on the quantum annealer is the particular formulation of the optimization problem. For this, it has to be mapped onto a quadratic unconstrained binary optimization (QUBO) problem. Complex optimization problems such as the CVRP can be translated to smaller subproblems and thus enable a sequential solution of the partitioned problem. This work presents a quantum-classic hybrid solution method for the CVRP. It clarifies whether the implementation of such a method pays off in comparison to existing classical solution methods regarding computation time and solution quality. Several approaches to solving the CVRP are elaborated, the arising problems are discussed, and the results are evaluated in terms of solution quality and computation time.

Frontiers in ICT, 2019, pp. 1-13

PDF Download

Quantum Technology and Optimization Problems: First International Workshop

Quantum Technology and Optimization Problems:
First International Workshop

S. Feld and C. Linnhoff-Popien

Preface

Over the past decade, a wide variety of experimental quantum computing hardware has been invented and used for fundamental demonstrations in laboratories. Initial results confirm the feasibility of such hardware in real-world applications. Recently, one can observe upcoming research in areas like traffic flow optimization, mobile sensor placement, machine learning, and many more. The development of quantum computing hardware, be it in the quantum gate model or adiabatic quantum computation (quantum annealing), has made huge progress in the past few years. This started to transfer know-how from quantum technology-based research to algorithms and applications. This development is offering numerous opportunities to contribute within research, theory, applied technologies, and engineering. The First International Workshop on Quantum Technology and Optimization Problems (QTOP 2019) was held in conjunction with the International Conference on Networked Systems (NetSys 2019) in Munich, Germany, on March 18, 2019. The aim of this workshop was to connect people from academia and industry to discuss theory, technology, and applications and to exchange ideas in order to move efficiently forward in engineering and development in the exciting area of quantum technology and optimization problems. This book comprises a section containing a keynote and four sections with scientific papers. The sessions deal with the following topics that are crucial to the development of future improvements in quantum technology and optimization problems:

• Analysis of optimization problems
• Quantum gate algorithms
• Applications of quantum annealing
• Foundations of quantum technology

The international call for papers resulted in the selection of the papers in these 
proceedings. The selection of the papers followed a rigorous review process involving an international expert group. Each paper was reviewed by at least three reviewers. We express our gratitude to all members of the Program Committee for their valuable work. We also want to thank the members of the Mobile and Distributed Systems Group, and especially the Quantum Applications and Research Laboratory (QAR-Lab) who were responsible for the organization of the conference.

QTOP 2019, Munich, Germany, March 18, 2019, Proceedings, Springer, 2019, vol. 11413

PDF Download

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform

T. Gabor, S. Zielinski, S. Feld, C. Roch, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien

Abstract

When solving propositional logic satisfiability (specifically 3SAT) using quantum annealing, we analyze the effect the difficulty of different instances of the problem has on the quality of the answer returned by the quantum annealer. A high-quality response from the annealer in this case is defined by a high percentage of correct solutions among the returned answers. We show that the phase transition regarding the computational complexity of the problem, which is well-known to occur for 3SAT on classical machines (where it causes a detrimental increase in runtime), persists in some form (but possibly to a lesser extent) for quantum annealing.

1st International Workshop on Quantum Technology and Optimization Problems (QTOP 2019), 2019, pp. 23-35

PDF Download

1234
Page 4 of 4

QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}