• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Analyzing Reinforcement Learning strategies from a parameterized quantum walker (en)

Analyzing Reinforcement Learning strategies from a parameterized quantum walker

Abstract:

Reinforcement Learning has made significant progress in solving complex problems. Hence, it is not surprising that it can be found in various application domains. Quantum Computing as well is a prospering field, where big advancements could be seen over the last decades. Better quantum computers led to first experimentally proven quantum supremacy. Hence, the field of research grew which led to improvements in various application domains of quantum computing, one of them being quantum Reinforcement Learning where quantum computing is combined with classical reinforcement learning techniques. Among other approaches, quantum walks are used as quantum computational framework which is also the case in the present work. Here, the approach of using parameterized coin matrices to determine the behaviour of the walker adapted to grid graphs is used. Thereby, the parameters of the coin matrices should be learned, such that an optimized performance of the walker to perform a specific task is reached. In this thesis the feasibility of this approach applied to a grid world is investigated using grids of the size 2×2 and 4×4. Furthermore, a new concept for including additional constraints by introducing an extra environment qubit is presented and its influence on the optimization process of the parameters examined. The results can be seen as a proof of concept as for all experiments the approach used here shows better results than the random baseline. Moreover, no negative influence of the environment qubit can be detected. The results gained here are a basis for further research using this approach.

Author:

Lorena Wemmer

Advisors:

Jonas Stein, Michael Kölle, Claudia Linnhoff-Popien


Student Thesis | Published May 2023 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}