• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Paper-EN

a:3:{s:6:"locale";s:5:"en_US";s:3:"rtl";i:0;s:9:"flag_code";s:2:"us";}
Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann Machines

Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann Machines

Tobias Müller, Christoph Roch, Kyrill Schmid, Philipp Altmann

Abstract

Reinforcement learning has driven impressive advances in machine learning. Simultaneously, quantum-enhanced machine learning algorithms using quantum annealing underlie heavy developments. Recently, a multi-agent reinforcement learning (MARL) architecture combining both paradigms has been proposed. This novel algorithm, which utilizes Quantum Boltzmann Machines (QBMs) for Q-value approximation has outperformed regular deep reinforcement learning in terms of time-steps needed to converge. However, this algorithm was restricted to single-agent and small 2×2 multi-agent grid domains. In this work, we propose an extension to the original concept in order to solve more challenging problems. Similar to classic DQNs, we add an experience replay buffer and use different networks for approximating the target and policy values. The experimental results show that learning becomes more stable and enables agents to find optimal policies in grid-domains with higher complexity. Additionally, we assess how parameter sharing influences the agents behavior in multi-agent domains. Quantum sampling proves to be a promising method for reinforcement learning tasks, but is currently limited by the QPU size and therefore by the size of the input and Boltzmann machine.

PDF Download

Modifying the quantum-assisted genetic algorithm

Modifying the quantum-assisted genetic algorithm

Thomas Gabor, Michael Lachner, Nico Kraus, Christoph Roch, Jonas Stein, Daniel Ratke, Claudia Linnhoff-Popien

Abstract

Based on the quantum-assisted genetic algorithm (QAGA) [11] and related approaches we introduce several modifications of QAGA to search for more promising solvers on (at least) graph coloring problems, knapsack problems, Boolean satisfiability problems, and an equal combination of these three. We empirically test the efficiency of these algorithmic changes on a purely classical version of the algorithm (simulated-annealing-assisted genetic algorithm, SAGA) and verify the benefit of selected modifications when using quantum annealing hardware. Our results point towards an inherent benefit of a simpler and more flexible algorithm design.

In progress

Solving Large Steiner Tree Problems in Graphs for Cost-Efficient Fiber-To-The-Home Network Expansion

Solving Large Steiner Tree Problems in Graphs for Cost-Efficient Fiber-To-The-Home Network Expansion

Tobias Müller, Kyrill Schmid, Daniëlle Schuman, Thomas Gabor, Markus Friedrich, Marc Geitz

Abstract

The expansion of Fiber-To-The-Home (FTTH) networks creates high costs due to expensive excavation procedures. Optimizing the planning process and minimizing the cost of the earth excavation work therefore lead to large savings. Mathematically, the FTTH network problem can be described as a minimum Steiner Tree problem. Even though the Steiner Tree problem has already been investigated intensively in the last decades, it might be further optimized with the help of new computing paradigms and emerging approaches. This work studies upcoming technologies, such as Quantum Annealing, Simulated Annealing and nature-inspired methods like Evolutionary Algorithms or slime-mold-based optimization. Additionally, we investigate partitioning and simplifying methods. Evaluated on several real-life problem instances, we could outperform a traditional, widely-used baseline (NetworkX Approximate Solver) on most of the domains. Prior partitioning of the initial graph and the presented slime-mold-based approach were especially valuable for a cost-efficient approximation. Quantum Annealing seems promising, but was limited by the number of available qubits.

In progress

Optimizing a Quantum Key Distribution Network using Quantum Annealing

Optimizing a Quantum Key Distribution Network using Quantum Annealing

Bob Godar, Christoph Roch, Jonas Stein
Abstract

Ausgehend vom Use Case 5.2 (PlanQK) wird in Zusammenarbeit mit der deutschen Telekom ein reales, aber anonymisiertes Netzwerk optimiert. Die vorliegende Arbeit umfasst den im Use Case (UC) geforderten quantentechnologischen Ansatz. Die anvisierten Optimierungsziele des UC für dieses Netzwerk bestehen darin, sowohl die Anzahl der Quantum Key Distribution (QKD) Systeme zu minimieren, wie auch die maximale Schlüsselübertragung mittels Quantum Annealing sicherzustellen. Dabei werden die Fälle Zertifikatsaustausch (1->N) und Any-to-Any (N->N) berücksichtigt. Der Zertifikatsaustausch wird durch eine angepasste MST-QUBO (Minimum Spanning Tree) mit fester Wurzel modelliert. Der Any-to-Any Fall wird durch eine selbstkonstruierte QUBO abgedeckt. Hierbei liegt das Augenmerk, neben den Optimierungszielen, auf eine kleinstmögliche Anzahl an Qubits, wie auch auf ein minimales Vorwissen bzgl. des Netzwerks. Darüber hinaus beinhalten beide Fälle aus Sicherheitsgründen die Möglichkeit einer eingeschränkten bzw. größtmöglichen Redundanz zu gewährleisten. Die Redundanz wird ebenfalls durch eine QUBO formuliert. Schlussendlich werden alle QUBO’s mit Hybrid- und QPU-Solver (Quantum Processing Unit) der Firma D-Wave gelöst, um belastbare Ergebnisse zu generieren. 

In progress

The UQ Platform: A Unified Approach To Quantum Annealing

The UQ Platform: A Unified Approach To Quantum Annealing

Thomas Gabor, Sebastian Zielinski, Christoph Roch, Sebastian Feld, Claudia Linnhoff-Popien
Abstract

Quantum Annealing is an algorithm for solving instances of quadratic unconstrained binary optimization (QUBO) that is implemented in hardware utilizing quantum effects to quickly find approximate solutions. However, QUBO can obviously also be solved by any classical optimization technique, for which various implementations exist. The UQ platform provides a unified interface to various means of solving QUBO that allows for a seamless switch between classical and quantum methods while implementing features such as load and user management.

IEEE 5th International Conference on Computer and Communication Systems (ICCCS 2020)

PDF Download

A Quantum Annealing Algorithm for Finding Pure Nash Equilibria in Graphical Games

A Quantum Annealing Algorithm for Finding Pure Nash Equilibria in Graphical Games

Christoph Roch, Thomy Phan, Sebastian Feld, Robert Müller, Thomas Gabor, Carsten Hahn, Claudia Linnhoff-Popien
Abstract

We introduce Q-Nash, a quantum annealing algorithm for the NP-complete problem of finding pure Nash equilibria in graphical games. The algorithm consists of two phases. The first phase determines all combinations of best response strategies for each player using classical computation. The second phase finds pure Nash equilibria using a quantum annealing device by mapping the computed combinations to a quadratic unconstrained binary optimization formulation based on the Set Cover problem. We empirically evaluate Q-Nash on D-Wave’s Quantum Annealer 2000Q using different graphical game topologies. The results with respect to solution quality and computing time are compared to a Brute Force algorithm and the Iterated Best Response heuristic.

Published in 20th International Conference on Computational Science (ICCS 2020), 2020, p. 12. doi:10.1007/978-3-030-50433-5_38

PDF Download

Approximating Archetypal Analysis Using Quantum Annealing

Approximating Archetypal Analysis Using Quantum Annealing

S. Feld, C. Roch, K. Geirhos, and T. Gabor

Abstract

Archetypes are those extreme values of a data set that can jointly represent all other data points. They often have descriptive meanings and can thus contribute to the understanding of the data. Such archetypes are identified using archetypal analysis and all data points are represented as convex combinations thereof. In this work, archetypal analysis is linked with quantum annealing. For both steps, i.e. the determination of archetypes and the assignment of data points, we derive a QUBO formulation which is solved on D-Wave’s 2000Q Quantum Annealer. For selected data sets, called toy and iris, our quantum annealing-based approach can achieve similar results to the original R-package archetypes.

28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020)

PDF Download

The Dynamic Time Warping Distance Measure as QUBO Formulation

The Dynamic Time Warping Distance Measure as QUBO Formulation

S. Feld, C. Roch, T. Gabor, M. To, and C. Linnhoff-Popien

Abstract

Dynamic Time Warping (DTW) is a representative of a distance measure that is able to calculate the distance between two time series. It is often used for the recognition of handwriting or spoken language. The metaheuristic Quantum Annealing (QA) can be used to solve combinatorial optimization problems. Similar to Simulated Annealing it seeks to find a global minimum of a target function. In order to use specialized QA hardware, the problem to be optimized needs to be translated into a Quadratic Unconstrained Binary Optimization (QUBO) problem. With this paper we investigate whether it is possible to transfer the DTW distance measure into a QUBO formulation. The motivation behind is the hope on an accelerated execution once the QA hardware scales up and the aspiration of gaining benefits due to quantum effects that are not given in the classical calculation. In principle, we find that it is possible to transform DTW into a QUBO formulation suitable for executing on QA hardware. Also, the algorithm returns not only the minimum total distance between two sequences, but also the corresponding warping path. However, there are several difficulties that make a manual intervention necessary.

IEEE 5th International Conference on Computer and Communication Systems (ICCCS 2020)

PDF Download

Insights on Training Neural Networks for QUBO Tasks

Insights on Training Neural Networks for QUBO Tasks

T. Gabor, S. Feld, H. Safi, T. Phan, and C. Linnhoff-Popien

Abstract

Current hardware limitations restrict the potential when solving quadratic unconstrained binary optimization (QUBO) problems via the quantum approximate optimization algorithm (QAOA) or quantum annealing (QA). Thus, we consider training neural networks in this context. We first discuss QUBO problems that originate from translated instances of the traveling salesman problem (TSP): Analyzing this representation via autoencoders shows that there is way more information included than necessary to solve the original TSP. Then we show that neural networks can be used to solve TSP instances from both QUBO input and autoencoders’ hiddenstate representation. We finally generalize the approach and successfully train neural networks to solve arbitrary QUBO problems, sketching means to use neuromorphic hardware as a simulator or an additional co-processor for quantum computing.

1st International Workshop on Quantum Software Engineering (QSE at ICSE)

PDF Download

The Holy Grail of Quantum Artificial Intelligence: Challenges in Accelerating the Machine Learning Pipeline

The Holy Grail of Quantum Artificial Intelligence: Challenges in Accelerating the Machine Learning Pipeline

T. Gabor, L. Suenkel, F. Ritz, L. Belzner, C. Roch, S. Feld, and C. Linnhoff-Popien

Abstract

We discuss the synergetic connection between quantum computing and artificial intelligence. After surveying current approaches to quantum artificial intelligence and relating them to a formal model for machine learning processes, we deduce four major challenges for the future of quantum artificial intelligence: (i) Replace iterative training with faster quantum algorithms, (ii) distill the experience of larger amounts of data into the training process, (iii) allow quantum and classical components to be easily combined and exchanged, and (iv) build tools to thoroughly analyze whether observed benefits really stem from quantum properties of the algorithm.

1st International Workshop on Quantum Software Engineering (QSE at ICSE)

PDF Download

1234
Page 3 of 4

QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}