• Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

  • Home
  • News
  • Technology
  • Research
  • Teaching
  • Business
  • Jobs
Contact
  • Deutsch
  • English

Dimensionality Reduction with Autoencodersfor Efficient Classification with VariationalQuantum Circuits

Dimensionality Reduction with Autoencoders for Efficient Classification with Variational Quantum Circuits

Abstract:

Quantum computing promises performance advantages, especially for data-intensive and complex computations. However, we are currently in the Noisy Intermediate-Scale Quantum era with a limited number of qubits available, which makes it challenging to realize these potential quantum advantages in machine learning. Several solutions, like hybrid transfer learning have been proposed, whereby a pre-trained classical neural network acts as the feature extractor and a variational quantum circuit as the classifier. While these approaches often yield good performance, it is not possible to clearly determine the contribution of the classical and quantum part. The goal of this thesis is therefore to introduce a hybrid model that addresses these limitations and implements a clear distinction between the classical and quantum parts. An autoencoder is used to reduce the input dimension. We compare the performance of transfer learning models (Dressed Quantum Circuit and SEQUENT) and a variational quantum circuit with amplitude embedding against our model. Additionally, the performance of a purely classical neural network on the uncompressed input and an autoencoder in combination with a neural network will be examined. We compare the test accuracies of the models over the datasets Banknote
Authentication, Breast Cancer Wisconsin, MNIST and AudioMNIST. The results show that the classical neural networks and the hybrid transfer learning approaches perform better than our model, which matches our expectations that the classical part in transfer learning plays the major role in the overall performance. Compared to a variational quantum circuit with amplitude embedding, no significant dierence can be observed, so that our model is a reasonable alternative to this.

Author:

Jonas Maurer

Advisors:

Claudia Linnhoff-Popien, Michael Kölle, Philipp Altmann, Leo Sünkel


Student Thesis | Published October 2023 | Copyright © QAR-Lab
Direct Inquiries to this work to the Advisors



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 Munich
Phone: +49 89 2180-9153
E-mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

General

Team
Contact
Legal notice

Social Media

Twitter Linkedin Github

Language

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Always active
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Einstellungen anzeigen
{title} {title} {title}