• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Schaltkreispartitionierung und Genetische Optimierung für Effiziente Qubit Verteilung in Verteiltem Quantum Computing

Schaltkreispartitionierung und Genetische Optimierung für Effiziente Qubit Verteilung in Verteiltem Quantum Computing

Abstract:

Quantencomputer sind in der Lage, bestimmte Rechenprobleme in einem kürzeren Zeitrahmen zu lösen als klassischen Computer. Die derzeitigen Quantencomputer sind geprägt durch „Rauschen“. Der Begriff „Rauschen“ beschreibt die Begrenzung und Ungenauigkeit von den Berechnungen auf einem Quantencomputer. Dies stellt eine erhebliche Herausforderung für die Entwicklung von Quantencomputern im großen Maßstab dar. Problemstellungen werden in einem Quantenschaltkreis kodiert, der Quantenbits beinhaltet. Um große Schaltkreise auszuführen, können die Qubits auf verschiedene Quantencomputer verteilt werden. Die Verteilung von Qubits auf mehrere Quantencomputer wird im Rahmen des verteilten Quantencomputings erforscht. Die Verbindung der Quantencomputer erfolgt über ein Quantennetzwerk. Ein weiterer Ansatz zur Vereinfachung von Quantenschaltungen besteht in der Partitionierung von Schaltkreisen, wodurch die Tiefe der Schaltkreise verringert und eine Parallelisierung ermöglicht wird. Allerdings kann bei einer Partitionierung des Schaltkreises eine Berücksichtigung der Eingenheiten des Netzwerks nicht gewährleistet werden. Eine Methode zur Berücksichtigung von Netzeigenschaften im Verteilungsprozess stellt der Einsatz eines evolutionären Algorithmus dar. Der Ansatz wurde bereits angewandt, um die Verteilung von Qubits in einem Quantennetzwerk zu optimieren, bislang allerdings nur in begrenztem Umfang. Das Ziel dieser Arbeit ist die Kodierung der spezifischen Netzwerkstruktur zur Berücksichtigung der spezifischen Kosten jeder Operation. Zur Evaluierung der Effizienz des Algorithmus wurden Experimente mit zwei verschiedenen Netzwerktopologien durchgeführt und die Ergebnisse mit drei Grundlagen verglichen. Die durchgeführten Untersuchungen belegen, dass der Algorithmus im Vergleich zu den alternativen Methoden auf beiden Topologien bessere Ergebnisse aufweist.

Autor/in:

Simon Schlichting

Betreuer:

Leo Sünkel, Maximilian Zorn, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Dezember 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}