• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Untersuchen der Lottery Ticket Hypothese für variationelle Quantenschaltkreise

Untersuchen der Lottery Ticket Hypothese für variationelle Quantenschaltkreise

Abstract:

Quantencomputing ist ein aufstrebendes Feld in der Informatik, welches in den letzten Jahren große Fortschritte erzielt hat, unteranderem im Bereich des maschinellen Lernens. Durch die Prinzipien der Quantenphysik bietet es die Möglichkeit, die Grenzen von klassischen Algorithmen zu überwinden. Variational Quantum Circuits (VQC), eine spezielle Form von Quantum Circuits, welche variierende Parameter haben, stehen jedoch durch das Barren Plateau-Phänomen vor einer erheblichen Herausforderung, das den Optimierungsprozess in bestimmten Fällen behindern kann. Die Lottery Ticket Hypothesis (LTH) ist ein aktuelles Konzept im klassischen maschinellen Lernen, das zu bemerkenswerten Verbesserungen in neuronalen Netzwerken führen kann. Diese Arbeit untersucht, ob de LTH auf VQCs angewendet werden kann. Die LTH besagt, dass es innerhalb eines großen neuronalen Netzwerks ein kleineres, effizienteres Subnetzwerk, auch Winning Ticket genannt, gibt, das eine vergleichbare Leistung wie das ursprüngliche, vollvernetzte Netzwerk erzielen kann. Die Anwendung dieses Ansatzes auf VQCs könnte helfen, die Auswirkungen des Barren Plateau-Problems zu verringern. Die Ergebnisse dieser Arbeit zeigen, dass die Weak LTH auf VQCs anwendbar ist, wobei Winning Tickets gefunden wurden, die lediglich 26,0% der ursprünglichen Gewichte haben. Für die Strong LTH, bei der das Pruning ohne vorheriges Training durchgeführt wird, wurde ein Winning Ticket für einen Binary VQC gefunden, welcher 100% Accuracy mit 45% der ursprünglichen Gewichte erreicht. Das zeigt, dass die Strong LTH auf VQCs anwendbar ist. Diese Ergebnisse liefern erste Hinweise darauf, dass die LTH ein Ansatz zur Verbesserung der Effizienz und Leistung von VQCs in Quantum Machine Learning
Aufgaben sein könnte.

Autor/in:

Leonhard Klingert

Betreuer:

Michael Kölle, Julian Schönberger, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht November 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}