Anwendung von Graphpartitionierungsalgorithmen und Genetischen Algorithmen zur Optimierung der Teleportationskosten in verteilten Quantenschaltkreisen
Abstract:
Derzeit befinden wir uns in der Noisy Intermediate Scale Quantum (NISQ) – Ära, in der die Anzahl der Qubits, die in einem einzelnen Quantencomputer verwendet werden können, zunimmt. Mit dieser Entwicklung entstehen jedoch Herausforderungen bei der Handhabung großer Quantensysteme. Die verteilte Quantenberechnung gewinnt daher an Bedeutung, um diese Herausforderungen zu bewältigen. Dabei werden mehrere Quantencomputer oder Quantenverarbeitungseinheiten miteinander verbunden, um gemeinsam an einem Problem zu arbeiten. Dies ermöglicht die Nutzung größerer Rechenkapazitä- ten und effizientere Lösungen komplexer Aufgaben. In der verteilten Quantenberechnung kommunizieren verschiedene Einheiten oder Teilsysteme miteinander, um Quanteninformation auszutauschen. Dabei spielt das grundlegende Teleportationsprotokoll eine wichtige Rolle. Es ermöglicht die Übertragung von Quanteninformationen zwischen den Teilsystemen. Ein wichtiger Aspekt besteht darin, die Anzahl der Teleportationen zu minimieren. Somit wird angestrebt, die Genauigkeit der Quantenberechnungen zu steigern, die Fehleranfälligkeit der Qubits zu reduzieren und gleichzeitig den Ressourcenverbrauch effizienter zu gestalten. In dieser Arbeit werden verschiedene Graphpartitionierungsalgorithmen, wie der Kernighan-Lin-Algorithmus und die Spektrale Partitionierung, ein Genetischer Algorithmus (GA) sowie zwei hybride Genetische Algorithmen (HGA), die eine Kombination aus den Graphpartitionierungsalgorithmen und einem GA sind, angewendet und untersucht, um die Anzahl globaler Quantengatter und die damit verbundenen Teleportationskosten zu minimieren. Zunächst werden die Graphpartitionierungsalgorithmen verwendet, um die Knoten möglichst gleichmäßig zu partitionieren. Zusätzlich wird ein GA implementiert, der sich um die Aufteilung der Qubits mittels zufälliger Partitionen kümmert. Die beiden HGA führen zu einer nahezu optimalen Anordnung der globalen Quantengatter, nachdem die Qubits mithilfe der Graphpartitionierungsalgorithmen partitioniert sind. Schließlich werden die vorgeschlagenen Ansätze anhand von neun Benchmark-Schaltkreisen untersucht und hinsichtlich der Anzahl globaler Quantengatter und Teleportationskosten verglichen. Außerdem werden zufällige Suchläufe für den GA und der beiden HGA durchgeführt, um deren Leistungsfähigkeit in Bezug auf das Optimierungsziel zu überprüfen. Die Ergebnisse deuten auf eine signifikante Verbesserung der Teleportationskosten hin.
Autor/in:
Teodor Slaveykov
Betreuer:
Leo Sünkel Thomas Gabor, Claudia Linnhoff-Popien
Studentische Abschlussarbeit | Veröffentlicht {Monat Jahr} | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer