• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Analyzing Reinforcement Learning strategies from a parameterized quantum walker

Analyzing Reinforcement Learning strategies from a parameterized quantum walker

Abstract:

Reinforcement Learning hat erhebliche Fortschritte bei der Lösung komplexer Probleme gemacht. Daher ist es nicht verwunderlich, dass es in verschiedenen Anwendungsbereichen zu finden ist. Auch die Quanteninformatik ist ein blühender Bereich, in dem in den letzten Jahrzehnten große Fortschritte zu verzeichnen waren. Bessere Quantencomputer führten zur ersten experimentell nachgewiesenen Quantenüberlegenheit. In der Folge wuchs das Forschungsgebiet, was zu Verbesserungen in verschiedenen Anwendungsbereichen des Quantencomputings führte. Einer davon ist das Quantenverstärkungslernen, bei dem das Quantencomputing mit klassischen Verstärkungslerntechniken kombiniert wird. Neben anderen Ansätzen werden Quantenwanderungen als Quantenberechnungsrahmen verwendet, was auch in der vorliegenden Arbeit der Fall ist. Hier wird der Ansatz verwendet, parametrisierte Münzmatrizen zu verwenden, um das Verhalten des Walkers, angepasst an Gittergraphen, zu bestimmen. Dabei sollen die Parameter der Münzmatrizen so erlernt werden, dass eine optimierte Leistung des Walkers zur Erfüllung einer bestimmten Aufgabe erreicht wird. In dieser Arbeit wird die Machbarkeit dieses Ansatzes auf einer Gitterwelt anhand von Gittern der Größe 2×2 und 4×4 untersucht. Darüber hinaus wird ein neues Konzept zur Einbeziehung zusätzlicher Randbedingungen durch Einführung eines zusätzlichen Umgebungsqubits vorgestellt und dessen Einfluss auf den Optimierungsprozess der Parameter untersucht. Die Ergebnisse können als Beweis für das Konzept angesehen werden, da der hier verwendete Ansatz in allen Experimenten bessere Ergebnisse als die zufällige Basislinie zeigt. Zudem kann kein negativer Einfluss des Umgebungsqubits festgestellt werden. Die hier gewonnenen Ergebnisse sind eine Grundlage für weitere Forschungen mit diesem Ansatz.

Autor:in:

Lorena Wemmer

Betreuer:

Jonas Stein, Michael Kölle, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Mai 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer



QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}