• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Accelerated VQE: Parameter Recycling for Similar Recurring Problem Instances

Tobias Rohe, Maximilian Balthasar Mansky, Michael Kölle, Jonas Stein, Leo Sünkel, and Claudia Linnhoff-Popien

Abstract

Training the Variational Quantum Eigensolver (VQE) is a task that requires substantial compute. We propose the use of concepts from transfer learning to considerably reduce the training time when solving similar problem instances. We demonstrate that its utilisation leads to accelerated convergence and provides a similar quality of results compared to circuits with parameters initialised around zero. Further, transfer learning works better when the distance between the source-solution is close to that of the target-solution. Based on these findings, we present an accelerated VQE approach tested on the MaxCut problem with a problem size of 12 nodes solved with two different circuits utilised. We compare our results against a random baseline and non transfer learning trained circuits. Our experiments demonstrate that transfer learning can reduce training time by around 93\% in post-training, relative to identical circuits without the use of transfer learning. The accelerated VQE approach beats the standard approach by seven, respectively nine percentage points in terms of solution quality, if the early-stopping is considered. In settings where time-to-solution or computational costs are critical, this approach provides a significant advantage, having an improved trade-off between training effort and solution quality.

In progress


QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}