• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • Deutsch
  • English

Abstracts-QO

a:3:{s:6:"locale";s:5:"de_DE";s:3:"rtl";i:0;s:9:"flag_code";s:2:"de";}
Optimierung von Variational Quantum Circuits für Hybride Quantum Proximal Policy Optimization Algorithmen

Optimierung von Variational Quantum Circuits für Hybride Quantum Proximal Policy Optimization Algorithmen

Abstract:

Quantencomputer, welche sich aktuell in der Entwicklung befinden, bieten in der Theorie neben der Hoffnung auf einen Quantenvorteil auch die Möglichkeit der Parameterreduktion. Diese ist insbesondere für das Machine Learning interessant, da sie einen schnelleren Lernvorgang und geringeren Arbeitsspeicherverbrauch für die rechenintensiven Prozesse erlauben würde. Im aktuellen Noisy Intermediate-Scale Quantum (NISQ) Zeitalter ist die Anzahl der Quantenbits jedoch noch beschränkt und Quantenrauschen erschwert das Training, daher konzentriert sich die Forschung auf Variational Quantum Circuits (VQCs). Diese hybriden Algorithmen aus einem parametrisierten Quantenschaltkreis mit klassischer Optimierung benötigen nur wenige Qubits, wodurch sie bereits jetzt die Möglichkeit bieten relevante Erfolge zu erzielen. In der der Literatur wurden in den letzten Jahren einige interessante Versionen vorgestellt, welche diese einsetzen, um Reinforcement Learning Probleme zu lösen und dabei vielversprechende Ansätze zur Verbesserung der Performance verwenden, welche es verdienen genauer betrachtet zu werden. In dieser Arbeit wird die Effektivität von Data Re-uploading, Input und Output Scaling und einer exponentiell abfallenden Lernrate für den Actor VQC eines Quantum Proximal Policy Optimization (QPPO) Algorithmus in den Frozen Lake und Cart Pole Umgebungen auf ihre Fähigkeit die Leistung des Schaltkreises im Verhältnis zur verwendeten Parameterzahl zu erhöhen evaluiert. Die Ergebnisse zeigen, dass die exponentiell abfallenden Lernrate und Data Re-uploading ohne das Hinzufügen weiterer trainierbarer Parameter die Leistung des VQC und dessen Hyperparameterstabilität deutlich erhöhen. Während Input Scaling keinen Einfluss auf die Parametereffizienz zu haben scheint, konnte Output Scaling eine wirksame Greediness-Kontrolle und so eine deutliche Steigerung der Performance und Robustheit ermöglichen.

Autor/in:

Timo Witter

Betreuer:

Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Februar 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Konstruktion von Quantenschaltkreisen mit eingeschränkten Gattern

Konstruktion von Quantenschaltkreisen mit eingeschränkten Gattern

Abstract:

In der Praxis stehen bei einem Quantenrechner ähnlich wie zu den klassischen Rechnern nur eine eingeschränkte Menge an Grundoperationen zur Verfügung. Diese werden auch Quantengatter genannt und nach den Forderungen der Quantenmechanik durch unitäre Transformationen modelliert. Im Gegensatz zu klassischen Schaltkreisen werden hier die Informationen sogenannter Qubits manipuliert. Solch eine Realisierung stellt jedoch eine große Herausforderung dar, weshalb nur ausgewählte Quantengatter anwendbar sind. Um schlussendlich einen beliebigen Schaltkreis auf einem Quantenrechner ausführen zu können, muss die implementierte Grundmenge jede beliebige unitäre Transformation erzeugen können. In dieser Arbeit werden wir eine eindeutige Charakterisierung sogenannter exakt universeller Mengen für Systeme mit bis zu zwei Qubits zeigen und auch für beliebig viele Qubits eine Grundmenge angeben. Quantengatter für einzelne Qubits können mit dreidimensionalen Rotationen gleichgesetzt werden, sodass hier zwei nicht parallele Rotationsachse ausreichen. Größere Systeme hingegen benötigen nicht lokale Gatter, die auch die Rotationen einzelner Qubits (lokale Gatter) ersetzen können. Durch eine rekursive Zerlegung werden wir für eine beliebige Anzahl an Qubits eine exakt universelle Menge konstruieren und zudem notwendige Eigenschaften zeigen. Die Ergebnisse geben einen Einblick, wie die Grundoperationen gestalten sein müssen, um eine beliebige Transformation zu erzeugen. Letztendlich soll diese Arbeit einen Ansatz bieten, hinreichende Eigenschaften für exakt universelle Mengen beliebig vieler Qubits für eine eindeutige Charakterisierung zu finden. Dieses noch offene Problem könnte Zerlegungen gegebener Quantengatter effizienter gestalten und überflüssige Elemente eliminieren.

Autor/in:

Sebastian Wölckert

Betreuer:

Maximilian Balthasar Mansky, Sebastian Zielinski, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Januar 2024 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Effiziente halb-überwachte Erkennung von Quantenanomalien mit Hilfe von Einklassen-Support-Vektor-Maschinen

Effiziente halb-überwachte Erkennung von Quantenanomalien mit Hilfe von Einklassen-Support-Vektor-Maschinen

Abstract:

Quantencomputing ist eine aufstrebende Technologie, die verschiedene Aufgaben des maschinellen Lernens verbessern kann. Durch die Kombination der Darstellungsleistung eines klassisch harten Quantenkerns und der Einklassen-SVM kann eine spürbare Verbesserung der durchschnittlichen Genauigkeit im Vergleich zur klassischen Version erreicht werden. Die übliche Methode zur Berechnung dieser Kernel ist jedoch mit einer quadratischen Zeitkomplexität in Bezug auf die Datengröße verbunden. Um dieses Problem zu lösen, versuchen wir zwei verschiedene Methoden. Die erste besteht darin, den Quantenkernel mit Hilfe von Zufallsmessungen zu messen, während die zweite die Ensemble-Methode mit variablem Subsampling verwendet, um eine lineare Zeitkomplexität zu erreichen. Unsere Experimente zeigen, dass diese beiden Methoden die Trainingszeiten um bis zu 95 % und die Inferenzzeiten um bis zu 25 % reduzieren. Obwohl die Methoden zu einer geringeren Leistung führen, ist die durchschnittliche Genauigkeit etwas besser als beim klassischen RBF-Kernel.

Autor/in:

Afrae Ahouzi

Betreuer:

Claudia Linnhoff-Popien, Michael Kölle, Pascal Debus, Dr. Robert Müller


Studentische Abschlussarbeit | Veröffentlicht November 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Anwendung von Graphpartitionierungsalgorithmen und Genetischen Algorithmen zur Optimierung der Teleportationskosten in verteilten Quantenschaltkreisen

Anwendung von Graphpartitionierungsalgorithmen und Genetischen Algorithmen zur Optimierung der Teleportationskosten in verteilten Quantenschaltkreisen

Abstract:

Derzeit befinden wir uns in der Noisy Intermediate Scale Quantum (NISQ) – Ära, in der die Anzahl der Qubits, die in einem einzelnen Quantencomputer verwendet werden können, zunimmt. Mit dieser Entwicklung entstehen jedoch Herausforderungen bei der Handhabung großer Quantensysteme. Die verteilte Quantenberechnung gewinnt daher an Bedeutung, um diese Herausforderungen zu bewältigen. Dabei werden mehrere Quantencomputer oder Quantenverarbeitungseinheiten miteinander verbunden, um gemeinsam an einem Problem zu arbeiten. Dies ermöglicht die Nutzung größerer Rechenkapazitä- ten und effizientere Lösungen komplexer Aufgaben. In der verteilten Quantenberechnung kommunizieren verschiedene Einheiten oder Teilsysteme miteinander, um Quanteninformation auszutauschen. Dabei spielt das grundlegende Teleportationsprotokoll eine wichtige Rolle. Es ermöglicht die Übertragung von Quanteninformationen zwischen den Teilsystemen. Ein wichtiger Aspekt besteht darin, die Anzahl der Teleportationen zu minimieren. Somit wird angestrebt, die Genauigkeit der Quantenberechnungen zu steigern, die Fehleranfälligkeit der Qubits zu reduzieren und gleichzeitig den Ressourcenverbrauch effizienter zu gestalten. In dieser Arbeit werden verschiedene Graphpartitionierungsalgorithmen, wie der Kernighan-Lin-Algorithmus und die Spektrale Partitionierung, ein Genetischer Algorithmus (GA) sowie zwei hybride Genetische Algorithmen (HGA), die eine Kombination aus den Graphpartitionierungsalgorithmen und einem GA sind, angewendet und untersucht, um die Anzahl globaler Quantengatter und die damit verbundenen Teleportationskosten zu minimieren. Zunächst werden die Graphpartitionierungsalgorithmen verwendet, um die Knoten möglichst gleichmäßig zu partitionieren. Zusätzlich wird ein GA implementiert, der sich um die Aufteilung der Qubits mittels zufälliger Partitionen kümmert. Die beiden HGA führen zu einer nahezu optimalen Anordnung der globalen Quantengatter, nachdem die Qubits mithilfe der Graphpartitionierungsalgorithmen partitioniert sind. Schließlich werden die vorgeschlagenen Ansätze anhand von neun Benchmark-Schaltkreisen untersucht und hinsichtlich der Anzahl globaler Quantengatter und Teleportationskosten verglichen. Außerdem werden zufällige Suchläufe für den GA und der beiden HGA durchgeführt, um deren Leistungsfähigkeit in Bezug auf das Optimierungsziel zu überprüfen. Die Ergebnisse deuten auf eine signifikante Verbesserung der Teleportationskosten hin.

Autor/in:

Teodor Slaveykov

Betreuer:

Leo Sünkel Thomas Gabor, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht {Monat Jahr} | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Community detection für gewichtete Graphen mittels Trennknotenerkennung in der NISQ Ära

Community detection für gewichtete Graphen mittels Trennknotenerkennung in der NISQ Ära

Abstract:

Ein wichtiges Optimierungsproblem in der Informatik ist die Community Detection. Dabei können durch die Analyse von Netzwerken sogenannte Communities gefunden werden und wichtige Informationen in vielen Bereichen – von der Biologie bis zu sozialen Strukturen – abgeleitet werden. Durch Gewichte an den einzelnen Kanten können noch mehr Informationen verarbeitet werden als durch die bloße Existenz jener Kanten, jedoch müssen für die Community Detection auf gewichteten Graphen dadurch auch mehr Faktoren berücksichtigt werden. Als NP-schweres Optimierungsproblem werden häufig Heuristiken benutzt, um schneller und effizienter eine akzeptable Lösung zu finden. Ein vielversprechender Ansatz ist dabei die Nutzung von Quanten-Computern, da bereits experimentell gezeigt werden konnte, dass diese in bestimmten Bereichen (z.B. Grover oder Shor-Algorithmus) effizienter Resultate erzielen können als klassische Computer. Da die meisten Ansätze für Community Detection durch QUBO-Matrizen jedoch sehr viel Speicherplatz verbrauchen, ist das Ziel dieser Arbeit einen Ansatz mit möglichst guter Speichereffizienz zu finden. Dafür wird ein vielversprechender Ansatz für die Community Detection vorgestellt, der auf der Erkennung und Analyse von Trennknoten basiert, was den Vorteil bietet, dass die Dimensionen der daraus resultierenden QUBO-Matrix die Anzahl der Knoten nicht übersteigen und die Matrix selber genauso dünn besetzt ist wie die Adjazenzmatrix des Graphs. Diese Trennknoten sollen den Graphen bei ihrer Entfernung so unterteilen, dass die übrig gebliebenen Komponenten jeweils exakt Teil einer Community sind. Dieser Ansatz wird auf gewichtete Graphen ausgebaut, indem die Wahrscheinlichkeit, dass es sich bei einer Kante um eine Trennkante handelt, anhand des Informationsdurchflusses der Nachbarschaft bestimmt wird. Dies wird anhand von synthetisch hergestellten Graphen mit einer festen Grundwahrheit über deren Communities, denen Gewichte zugewiesen werden ohne die Community-Struktur zu verändern, überprüft.

Autor/in:

Dominik Ott

Betreuer:

Jonas Stein, Jonas Nüßlein, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht August 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


Efficient Quantum Circuit Architecture for Coined Quantum Walks on many Bipartite Graphs

Efficient Quantum Circuit Architecture for Coined Quantum Walks on many Bipartite Graphs

Abstract:

Quantum-Walks, ein Quantenanalogon der klassischen Random-Walks, haben sich als leistungsfähiges Paradigma für Quantenberechnungen und -simulationen erwiesen. Während klassische Random Walks auf stochastischen Prozessen beruhen, um Systeme zu erforschen, nutzen Quantenwalks die einzigartigen Eigenschaften der Quantenmechanik, um diese Aufgaben effizienter zu erfüllen. Insbesondere zeitdiskrete Quantenwanderungen (DTQWs) wurden ausgiebig für ihre Anwendungen in der Graphentheorie untersucht, wie z. B. Graphenisomorphismus, Graphenkonnektivität und graphbasierte Suchprobleme. Trotz ihres Potenzials bleibt die Implementierung von DTQWs auf zeitnahen Quantengeräten eine Herausforderung. Während sich frühere Arbeiten auf die Implementierung von Quantenschaltkreisen für DTQWs mit einheitlichen Münzoperatoren konzentrierten, ist die Implementierung von inhomogenen Münzsätzen eine komplexe Aufgabe, die neue Ansätze erfordert. In dieser Arbeit wird eine effiziente Quantenschaltungsarchitektur zur Implementierung von DTQWs mit inhomogenen, positionsabhängigen Münzsätzen auf einer großen Teilmenge von bipartiten Graphen vorgestellt. Es wird ein neuartiges Kantenbeschriftungsschema, Gray Code Directed Edges encoding, eingeführt, das die Vorteile des Gray Codes für die Positionskodierung und die bipartite Struktur des zugrundeliegenden Graphen nutzt, um die Komplexität der Quantenschaltungen zu minimieren, die die Münz- und Verschiebeoperatoren darstellen. Diese Optimierung führt zu weniger Gatteroperationen, wodurch die Auswirkungen von Rauschen und Fehlern in zukünftigen Quantengeräten reduziert werden. Es wird ein Beschriftungsschema für verschiedene Graphentopologien entwickelt, darunter Zyklusgraphen, verkettete Zylindergraphen und quadratische Gittergraphen, die besonders für Anwendungen des Verstärkungslernens relevant sind. Diese Erkenntnisse bieten eine neue Perspektive auf die Implementierung von geprägten Quantenspaziergängen und bilden die Grundlage für zukünftige Forschungen zu Quantenspaziergängen mit inhomogenen Münzmengen.

Autor/in:

Viktoryia Patapovich

Betreuer:

Jonas Stein, Michael Kölle, Maximilian-Balthasar Mansky, Claudia Linnhoff-Popien


Studentische Abschlussarbeit | Veröffentlicht Juli 2023 | Copyright © QAR-Lab
Anfragen zu dieser Arbeit an die Betreuer


123
Page 3 of 3

QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2025

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter Linkedin Github

Sprache

  • Deutsch
  • English
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}