QCHALLenge Veröffentlichungen bei der ICAART 24 in Rom
Präsentation von vier Papern zum Thema Quantum Machine Learning
(6. März 2024/Rom) Mitglieder des QCHALLenge-Konsortiums haben auf der Internationalen Konferenz für Agenten und maschinelles Lernen in Rom vier akzeptierte Paper zur Erforschung von Anwendungen sowie der Grundlagenforschung im Bereich des Quantum Machine Learnings (QML) vorgestellt. Zwei dieser Veröffentlichungen entstanden aus der QC Optimization Challenge der LMU und beleuchten die Anwendung von QML für die Modellierung chemischer Prozesse sowie die Erkennung von Anomalien. In den anderen beiden Papern haben wir (1) einen neuen, KI-inspirierten Ansatz für die Architektur parametrisierter Quantenschaltkreise vorgestellt und (2) eine sequenzielle Zusammenstellung der Kosten-Hamiltonians im Variational Quantum Eigensolver vorgestellt, die einen Weg aufzeigt, das Problem der Barren-Plateaus anzugehen.
Für weitere Informationen finden Sie hier die Links zu den veröffentlichten Artikeln sowie zu den frei verfügbaren Vorveröffentlichungen:
- J. Stein, T. Rohe, F. Nappi, J. Hager, D. Bucher, M. Zorn, M. Kölle and C. Linnhoff-Popien, “Introducing Reduced-Width QNNs, an AI-inspired Ansatz Design Pattern”. In Proceedings of the International Conference on Agents and Artificial Intelligence – Volume 3, pages 1127–1134, Feb. 2024. DOI: 10.5220/0012449800003636. arXiv: 2306.05047.
- J. Stein, N. Roshani, M. Zorn, P. Altmann, M. Kölle and C. Linnhoff-Popien, “Improving Parameter Training for VQEs by Sequential Hamiltonian Assembly”. In Proceedings of the International Conference on Agents and Artificial Intelligence – Volume 2, pages 99–109, Feb. 2024. DOI: 10.5220/0012312500003636. arXiv: 2312.05552.
- J. Stein, M. Poppel, P. Adamczyk, R. Fabry, Z. Wu, M. Kölle, J. Nüßlein, D. Schuman, P. Altmann, T. Ehmer, V. Narasimhan and C. Linnhoff-Popien, “Benchmarking Quantum Surrogate Models on Scarce and Noisy Data”. In Proceedings of the International Conference on Agents and Artificial Intelligence – Volume 3, pages 352–359, Feb. 2024. DOI: 10.5220/0012348900003636. arXiv: 2306.05042.
- J. Stein, D. Schuman, M. Benkard, T. Holger, W. Sajko, M. Kölle, J. Nüßlein, L. Sünkel, O. Salomon and C. Linnhoff-Popien, “Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines in Fraud Detection”. In Proceedings of the International Conference on Agents and Artificial Intelligence – Volume 2, pages 177-185, Feb. 2024. DOI: 10.5220/0012326100003636. arXiv: 2306.04998.
(13.06.2023/München) Quantencomputing ist nicht mehr nur ein Zukunftstrend – es wird bleiben und verspricht, sowohl lokale als auch globale Probleme in verschiedenen Bereichen zu lösen, die außerhalb der Reichweite heutiger Computer liegen. Am 20.-21. September 2023 findet in Berlin der Quantum Summit statt, an dem zahlreiche Experten aus der Forschung sowie Entscheidungsträger aus der Wirtschaft und der Politik zusammenkommen, um sich über wichtige Erkenntnisse im Bereich des Quantencomputing auszutauschen. Jonas Stein, Wissenschaftlicher Mitarbeiter des QAR-Labs der LMU München wird wertvolle Einblicke in die aktuellen QC-Forschungsprojekte geben – insbesondere zu den Highlights aus der Quantum Computing Optimization Challenge.