• Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • de
  • en

  • Home
  • Aktuelles
  • Technologie
  • Forschung
  • Lehre
  • Wirtschaft
  • Jobs
Kontakt
  • de
  • en

Approximating Archetypal Analysis Using Quantum Annealing

Approximating Archetypal Analysis Using Quantum Annealing

S. Feld, C. Roch, K. Geirhos, and T. Gabor

Abstract

Archetypes are those extreme values of a data set that can jointly represent all other data points. They often have descriptive meanings and can thus contribute to the understanding of the data. Such archetypes are identified using archetypal analysis and all data points are represented as convex combinations thereof. In this work, archetypal analysis is linked with quantum annealing. For both steps, i.e. the determination of archetypes and the assignment of data points, we derive a QUBO formulation which is solved on D-Wave’s 2000Q Quantum Annealer. For selected data sets, called toy and iris, our quantum annealing-based approach can achieve similar results to the original R-package archetypes.

28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020)

PDF Download


QAR-Lab – Quantum Applications and Research Laboratory
Ludwig-Maximilians-Universität München
Oettingenstr. 67
80538 München
Telefon: +49 89 2180-9153
E-Mail: qar-lab@mobile.ifi.lmu.de

© Copyright 2021

Allgemein

Team
Kontakt
Impressum

Social Media

Twitter
Linkedin
Github

Sprache

  • de
  • en